

Specification
EBICS

(Electronic Banking Internet
Communication Standard)

Version 2.4.2
Final Version

This specification is valid from February 16th 2010.

Amendment history

The following table provides an overview of the significant amendments that were made from
version 2.4 to the revision document 2.4.1.

Chapter
Date of
Decision

Type
∗

Description Effective from

1 C Objective of cooperation 2.4.1
4.6.1.2;
11.2.2

 E Correction of oversight errors 2.4.1

9.5.2 C Note on the language of the report text in HEV 2.4.1
5.5.1.1.1;
11.3.2.1

 E Correction of a translation error (from German) 2.4.1

13 C This chapter (return codes) is removed to a separate
document (EBICS Annex 1 Return Codes)

2.4.1

14 (now 13) C This chapter is reorganized:
1) Most of the order types are removed in a separate

document (EBICS Annex 2 Order Types)
2) Technical EBICS order types (beginning with an H

like HKD …; INI, PUB etc. …) and the neutral order
types FUL and FDL remain in this chapter.

2.4.1

4.4.2.2.2 E Correction of an obvious incorrect annotation in XML
example

2.4.2

9.5.1 Ext Explanation of the use of the new technical return code
EBICS_INVALID_HOST_ID

2.4.2

11.2.3 C Clarification concerning the use of signature classes
and the ES quantity

2.4.2

∗ E = Error; A = Amendment; C = Clarification; Ext = Extension; D = Deletion

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S
 Page:3
 Status: Final Version 2.4.2

Contents

1 Overview and objectives of EBICS ...8
1.1 Objective of the cooperation...8
1.2 General objectives of EBICS..8

2 Definitions...10
2.1 Terms ...10
2.2 Notation ..10

2.2.1 XML ..10
2.2.2 Flow diagrams ..12
2.2.3 Other notation...12

2.3 Data types ..13

3 Design decisions..14
3.1 OSI model from EBICS perspective ...14

3.1.1 TCP/IP as package-orientated transmission layer....................................14
3.1.2 TLS as transport encryption ...15
3.1.3 HTTP(S) as a technical basic protocol ...17
3.1.4 XML as an application protocol language...17

3.2 Compression, encryption and coding of the order data..22
3.3 Segmentation of the order data ..23
3.4 Recovering the transmission of order data (recovery) [optional]23
3.5 Electronic signature (ES) of the order data ..24

3.5.1 Subscriber’s ES ..24
3.5.2 Financial institution’s ES [planned]...25
3.5.3 Representation of the ES’s in EBICS messages......................................26

3.6 Preliminary verification [optional]..27
3.7 Technical subscribers...28
3.8 Identification and authentication signature ...29
3.9 X.509 data [planned] ..30
3.10 Supported order types ..31
3.11 Order parameters ...32
3.12 Flow of the EBICS transactions..35

4 Key management..39
4.1 Overview of the keys used ...39

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 4
 Status: Final Version 2.4.2

4.2 Representation of the public keys ..40
4.3 Actions within key management ...42
4.4 Initialisation...43

4.4.1 Subscriber initialisation...46
4.4.2 Download of the financial institution’s public keys....................................60

4.5 Suspending a subscriber ..66
4.5.1 Alternatives...66
4.5.2 Revoking a subscriber via SPR ..67

4.6 Key changes...67
4.6.1 Changing the subscriber keys ..67
4.6.2 Changing the bank keys ...74

4.7 Change-over to longer key lengths...75
4.8 Migration of remote data transmission to EBICS via FTAM76

4.8.1 General description ..76
4.8.2 HSA [optional]...78
4.8.3 Description of the EBICS messages for HSA...81

4.9 Summary ..83

5 EBICS transactions ..85
5.1 General provisions..85

5.1.1 EBICS transactions ..85
5.1.2 Transaction phases and transaction steps ...85
5.1.3 Processing of orders...85
5.1.4 Transaction administration ...86

5.2 Assignment of EBICS request to EBICS transaction..87
5.3 Preliminary verification of orders [optional]...88
5.4 Recovery of transactions [optional] ..90
5.5 Upload transactions..92

5.5.1 Sequence of upload transactions ...92
5.5.2 Recovery of upload transactions ..114

5.6 Download transactions ...118
5.6.1 Sequence of download transactions...118
5.6.2 Recovery of download transactions..134

6 Encryption...139
6.1 Encryption at TLS level...139
6.2 Encryption at application level ..139

7 Segmentation of the order data ..141

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 5
 Status: Final Version 2.4.2

7.1 Process description ..141
7.2 Implementation in the EBICS messages ..141

8 Distributed Electronic Signature (VEU)..143
8.1 Process description ..143
8.2 Technical implementation of the VEU ..145
8.3 Detailed description of the VEU order types...147

8.3.1 HVU (download VEU overview) and HVZ (Download VEU
overview with additional information) [mandatory]..................................147

8.3.2 HVD (retrieve VEU state) [mandatory]..169
8.3.3 HVT (retrieve VEU transaction details) [mandatory]...............................176
8.3.4 HVE (add electronic signature) [mandatory]...192
8.3.5 HVS (VEU cancellation) [mandatory] ...195

9 “Other” EBICS order types..199
9.1 HAA (download retrievable order types) [optional] ...199

9.1.1 HAA request ...199
9.1.2 HAA response ..199

9.2 HPD (download bank parameters) ...201
9.2.1 HPD request ...202
9.2.2 HPD response ..202

9.3 HKD (retrieve customer’s customer and subscriber information) [optional]210
9.3.1 HKD request ...210
9.3.2 HKD response ..210

9.4 HTD (retrieve subscriber’s customer and subscriber information) [optional]226
9.4.1 HTD request ...226
9.4.2 HTD response ..226

9.5 HEV (Download of supported EBICS versions)..229
9.5.1 HEV request ...229
9.5.2 HEV response ..230
9.5.3 Schema for HEV request / HEV response..230

9.6 FUL and FDL (Upload and download files with any format) [optional]232

10 Customer protocols ...234
10.1 Customer protocol - stipulations regarding contents and form234

10.1.1 Stipulations regarding contents ..235
10.1.2 Stipulations regarding form...236
10.1.3 File display at the customer’s and the bank’s end..................................244

10.2 Stipulations for protocolling SEPA data formats...246

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 6
 Status: Final Version 2.4.2

10.2.1 Specification for SEPA payment transactions (ZKA)246
10.2.2 SEPA-Container ...247
10.2.3 Extended grouping options...248

10.3 Protocolling the VEU ..249
10.4 Protocolling key management ..254
10.5 Protocolling other system-related orders..255
10.6 Report texts ..256

11 Appendix: Cryptographic processes..259
11.1 Identification and authentication signature ...259

11.1.1 Process...259
11.1.2 Format ..259

11.2 Electronic signatures ..260
11.2.1 Process...260
11.2.2 Format ..260
11.2.3 EBICS authorisation schemata for signature classes.............................260

11.3 Encryption...262
11.3.1 Encryption at TLS level...262
11.3.2 Encryption at application level ..262

11.4 Replay avoidance via Nonce and Timestamp ..265
11.4.1 Process description ..265
11.4.2 Actions of the customer system..265
11.4.3 Actions of the bank system...267

11.5 Initialisation letters ..268
11.5.1 Initialisation letter for INI (example) ..268
11.5.2 Initialisation letter for HIA (example)...270

11.6 Generation of the transaction IDs...272

12 Overview of selected EBICS details ...273
12.1 Optional EBICS features ..273

12.1.1 Optional order types ...273
12.1.2 Optional functionalities in the course of the transaction273

12.2 EBICS bank parameters...273
12.3 Order attributes...274
12.4 Security media of bank-technical keys ...275
12.5 Patterns for subscriber IDs, customer IDs, order IDs ...275

13 Appendix: Order type identifiers...277

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 7
 Status: Final Version 2.4.2

14 Appendix: Signature process for the electronic signature ..279
14.1 Version A005/A006 of the electronic signature ..280

14.1.1 Preliminary remarks and introduction ...280
14.1.2 RSA ..281
14.1.3 Standard digital signature algorithm ...282
14.1.4 ZKA Signature Mechanisms A005 and A006 ...284
14.1.5 References ...290
14.1.6 XML structure of signature versions A005/A006292

14.2 Version A004 of the electronic signature..292
14.2.1 Introduction...292
14.2.2 RSA key components ...293
14.2.3 Signature algorithm ..295
14.2.4 Signature process according to the DIN specification296
14.2.5 Signature format A004..300

15 Appendix: Encryption process V001..303
15.1 Workflows at the sender’s end ...303
15.2 Workflows at the recipient’s end...304

16 Appendix: Standards and references...305

17 Appendix: Glossary ...307

18 Table of diagrams...311

The XML schemata in the appendix of this document can be found on the Internet:
http://www.ebics.org/H003, http://www.ebics.org/S001 and http://www.ebics.org/H000

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 8
 Status: Final Version 2.4.2

1 Overview and objectives of EBICS

1.1 Objective of the cooperation
The German banking sector represented by Zentraler Kreditausschuss (ZKA) and the French
banking sector represented by Comité Français d'Organisation et de Normalisation
Bancaires (CFONB) signed a crossborder cooperation agreement on the joint use of EBICS.
EBICS was originally developed by the German banking industry and enables corporate
clients to conduct their banking business flexibly, securely and efficiently and to select the
most suitable services provider for their individual needs. EBICS also has “multi-bank
capability”, meaning that corporate clients in both countries can reach any bank in Germany
and France in future using the same software.
This document describes the common specification of French and German banks.
Principally, this specification applies to both countries unless an instruction is specified for a
particular country relating to a special application of the specification.
Any optional functionality can be supported in one country (and rendered mandatory) and, at
the same time, not supported in another country.
The specific use of optional functionalities will be described in detail in a common
Implementation Guide which is in progress at present.

1.2 General objectives of EBICS
This EBICS (“Electronic Banking Internet Communication Standard”) detailed specification
expands the existing “DFÜ Abkommen” (Remote Data Transmission Agreement) of
15.03.2005 with the functionality of multi-bank capable, secure communication via the
Internet and henceforth comprises Appendix 1 of the agreement under the title “Specification
for the EBICS connection”. After the practical introduction of EBICS, the FTAM process that
had hitherto been solely valid within the framework of the “DFÜ Abkommen” will be
supported in parallel to EBICS for a period of time that is still to be fixed by the Zentraler
Kreditausschuss (ZKA), and comprises Appendix 2 in the current Version 2.0 of the “DFÜ
Abkommen”, valid from 03.11.2005, under the title “Specification of the FTAM connection”.
The bank-technical data formats that must be used for all communication processes within
the framework of the “DFÜ Abkommen” comprise Appendix 3 of the “DFÜ Abkommen” under
the title “Specification of data formats”. The actual version of Appendix 3 and the above-
mentioned Appendix 2 can be downloaded on www.ebics.de („Specifications“).

The application-oriented elements of the FTAM process, i.e. the multi-bank capability, the
transmission of data in bank-specific formats using order types and the defined security
processes for electronic signatures (ES), are retained in their entirety for EBICS. The order
types defined in the Appendix (Chapter 13) and the document “EBICS Annex 2 Order Types”
are supported. The FTAM process order types that are no longer supported in EBICS are
listed in Chapter 3.10. Electronic signatures are supported in Version A004 and above, if
applicable.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 9
 Status: Final Version 2.4.2

EBICS does not present any special requirements of the concrete architecture of the
customer’s systems; stand-alone desktop applications can be connected just as easily as
e.g. client/server applications or applet solutions.

At the application level, the process “Remote data transmission with customer” is augmented
by the concept of Distributed Electronic Signature (VEU), which allows chronologically and
spatially-independent authorisation of orders from all customers.

The fundamental features of the EBICS standard are:

 Transmission of professional data (commercial transactions) via order types using
established bank-specific formats

 Expansion of the “DFÜ Abkommen” with the possibility of the “Distributed Electronic
Signature (VEU)”

 Specification of the EBICS-specific protocol elements in XML

 Transmission of messages via http (“Internet-based”); utilisation of TLS for basic
transportation security between the customer’s and the bank’s systems, using TLS server
authentication

 Cryptographic safeguarding of each individual step of a transaction via encryption and
digital signatures at the application level.

The EBICS detailed specification is the basis for the development of customer and bank
systems that communicate using the EBICS protocol. As such, it contains manufacturer-
independent process descriptions and thereby guarantees interaction between customer and
bank systems from different manufacturers.

This detailed specification incorporates the EBICS protocol description and all details relating
to code management, VEU and the XML schemas for the order data of the new EBICS order
types. The complete XML schemas are stored as separate HTML documents.

The detailed specification only limits the processing freedom of the customer and bank
systems with specifications and provisions where this is necessitated by security
considerations or processes beyond the scope of the EBICS communication. In contrast to
the EBICS Implementation Guide, implementation alternatives will not be indicated in the
detailed specification.

Nota Bene, all descriptions relating to FTAM will not apply to the French implementation.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 10
 Status: Final Version 2.4.2

2 Definitions

2.1 Terms
The following terms in small capitals have a special meaning in the protocol definition:

 MUST: denotes a compelling requirement; only those implementations that fulfil this
requirement are deemed to be EBICS-conformant.

 SHALL/SHOULD: denotes requirements that are to be followed under normal
circumstances; however, individual exceptions are possible for technical or professional
reasons.

 CAN/MAY: denotes unbinding recommendations or optional features.

Functionalities or features of the EBICS protocol are designated as optional if they do not
have to be supported by the financial institution. Customers do not have a legal claim to the
corresponding functionality from the financial institutions.

Functionality or features of the EBICS protocol in a particular version are designated as
planned if they are being prepared for subsequent versions but may not yet be used in the
present version.

2.2 Notation

2.2.1 XML

2.2.1.1 XML schema
The following symbology is used for graphical representation of XML schemas:

 Elements are placed in rectangles.

 Attributes are also placed in rectangles and are surrounded by an “attributes” box.

 Elements, attributes and other declarations that belong to a complex type are surrounded
by a dashed box that is highlighted in yellow.

 A “branch” (corresponds to choice in XML schema) is shown as an octagon containing
a switch symbol for three possible switch positions. The connecting lines to the possible
alternatives branch out on the right of the symbol.

 A “sequence” (corresponds to sequence in XML schema) is shown as an octagon
containing a line symbol with three points on it. The connecting lines to the individual
sequence elements branch out on the right of the symbol.

 Symbols with solid edges denote mandatory use, and in the XML schema correspond to
the attribute minOccurs="1" for elements or use="required" for attributes.

 Dashed symbols denote optional use, and in the XML schema correspond to the attribute
minOccurs="0" for elements or use="optional" for attributes.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 11
 Status: Final Version 2.4.2

 Crossed-out symbols denote planned usage, and in the XML schema correspond to the
attribute combination minOccurs="0" maxOccurs = “0” for elements or
use="prohibited" for attributes

 “m..n“ in the right lower corner of an element symbol restrict the use of the element to m-
to n-times occurrence, and in the XML schema correspond to minOccurs="m"
maxOccurs="n"; correspondingly, where “m..∞” minOccurs="m"
maxOccurs="unbounded"

 Element groups are represented by octagons, and correspond to the group declaration
in the XML schema

 Attribute groups are surrounded by boxes with the respective group names and
correspond to the attributeGroup declaration in the XML schema.

Diagram 1: XML schema symbols

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 12
 Status: Final Version 2.4.2

2.2.1.2 XML documents
Individual code segments are shown in the Courier font.
If an element name or type does not fit completely onto a line, the symbol » is used to direct
the reader to the next line.

Complete examples of code are shown in Courier 8pt and are surrounded by a frame.

2.2.2 Flow diagrams
Processes are represented with the help of UML 2.0 activities. In this document they receive
a start and an end node. A start node is the starting point of a process, the end node marks
the end of an entire process.

For the sake of simplicity, activities will be nested within one another. Actions that contain an
activity will be marked with a fork symbol. Activity A in Diagram 2 comprises three process
steps (actions). Step_2 is itself an activity comprising 2 process steps. Hence the activity
Step_2 is called up within activity A, i.e. run through from the start node of Step_2 to the end
node of Step_2.

Step_3

Step_1

Step_2

Step_21

ok

Error

Stept_22

Step_2

Diagram 2 Nesting of activities

2.2.3 Other notation
In the naming of new order types, the appended tag “[mandatory]” denotes that the financial
institution MUST support this order type. On the other hand, the appended tag “[optional]”
means that the financial institution CAN support this order type.

Similarly, the tag “[planned]” is appended to planned features or functions.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 13
 Status: Final Version 2.4.2

2.3 Data types
The XML schema defines a set of primitive and derived data types that can be used to form
your own data types.

The following primitive data types are primarily used in conjunction with EBICS:

 string: string of characters with unrestricted length and structure

 boolean: boolean truth value with the characteristics “true” (=1) or “false” (=0)

 decimal: decimal numbers to any degree of accuracy

 dateTime: time stamp with date and time in accordance with ISO 8601
The structure is as follows: YYYY-MM-DDTHH:MM:SS.sssZ. The character Z indicates
that date and time have been converted to UTC. If the date string does not correspond to
this structure, the EBICS message has to be declined or the ES verification has to be
rated as negative, respectively.

 date: date in accordance with ISO 6801

 hexBinary: hexadecimal value with unrestricted length

 base64Binary: data type to record base64-coded binary data

 anyURI: uniform resource locator (e.g. URL, IP address).

The following pre-defined data types are derived from primitive data types and are used in
the EBICS standard:

 normalizedString: string of characters that has spaces (blanks) removed at the start and
end

 token: a normalizedString that contains no line feeds and no multiple spaces in
succession

 language: nationality label in accordance with RFC 1766

 nonNegativeInteger: non-negative integer values

 positiveInteger: positive integer values.

With the help of the aforementioned data types, new data types are defined in the EBICS
schema:

 simple data types merely define restrictive or expanding characteristics with regard to
the value range of an existing primitive or derived data type, i.e. they derive from an
existing data type

 complex data types define new structures composed of fields and attributes of different
(simple or complex) data types.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 14
 Status: Final Version 2.4.2

3 Design decisions
This chapter will point out decisions that had a decisive influence on the design of the EBICS
protocol. It includes network-specific details as well as specifications of a professional and
technical nature.

3.1 OSI model from EBICS perspective

3.1.1 TCP/IP as package-orientated transmission layer
TCP/IP is used as a transport protocol. The data that is to be exchanged is transmitted as
packages via IP (Internet Protocol). This package transfer is monitored by TCP
(Transmission Control Protocol) as a transmission monitoring protocol.

Communication is established using a URL (Uniform Resource Locator). Alternatively, an IP
address belonging to the respective financial institution can also be used. The URL or IP
address together with the EBICS host ID is required for establishing a connection to the bank
computer and is given to the customer upon conclusion of the contract with the financial
institution.

physical layer
(e.g. ethernet)

network layer:
IP

transport layer:
TCP

transport
encryption: TLS

application layer
HTTP(S)

application
protocol:

EBICS (XML)

simplified OSI
model including
specialisations for
the EBICS protocol

transport-
based

application-
based

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 15
 Status: Final Version 2.4.2

3.1.2 TLS as transport encryption
TLS was developed by the Transport Layer Security work group in IETF’s Security Area. It is
an open standard for secure transmission of package-orientated data, originally developed
by Netscape (initially under the name SSL). TLS aims to guarantee data security on levels
above TCP/IP. The protocol allows data encryption, authentication of servers and message
integrity for TCP/IP communication.

It combines the following basic characteristics:

1. The TLS connection is confidential: With the TLS handshake, a common,
secret key is agreed using asymmetric encryption (RSA, in the case of EBICS)
that serves as a symmetric key (AES or 3DES, in the case of EBICS) in the
rest of the TLS session.

2. The integrity of the TLS connection is assured: The message transport
contains a message integrity verification via so-called Message Authentication
Codes (MACs). Secure hash functions (SHA-1 in the case of EBICS) are used
for the MAC evaluations.

3. The identity of the financial institution is attested by the use of server
certificates and electronic signatures; the messages from the financial
institution are authenticated by means of this TLS server authentication.

4. TLS contains mechanisms to protect against man-in-the-middle attacks on the
TLS connection between customer and bank systems. To this end, it uses
internal counters and “shared secrets”, and additionally secures the
handshake against such an attack with signed summaries of the data
exchanged thus far.

A TLS connection is established between the customer system and the bank system for
transmission of the EBICS messages between these two systems.

TLS 1.0 with X.509v3 server certificates is used, i.e. the server MUST authenticate itself via
certificate. The type of certificate MUST be suitable for the key exchange algorithm of the
selected key.

EBICS dispenses with TLS client authentication in Version H003 to promote better market
acceptance. Later expansion to include TLS client authentication capability (and the
associated issue of X.509v3 client certificates for TLS to customer systems) is not excluded.

The terms client and server are used as synonyms for TLS client and TLS server in the next
two subchapters. Here, the customer system assumes the role of the TLS client, and the
bank system that of the TLS server.

3.1.2.1 Pre-distribution and verification of the trust anchors
The issuer of the TLS server certificates can be both public and non-public (i.e. bank-
internal) CAs. It is the responsibility of the credit institute to ensure that a public CA is only

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 16
 Status: Final Version 2.4.2

authorised as the issuer of its TLS certificate if this CA guarantees adequate verification of
the identity of the certificate owner.

It is the task of the financial institution to supply subscribers that wish to communicate with
the financial institution via EBICS with a trustworthy CA certificate via the certification path of
the TLS server certificate. To do this, the following two possibilities apply:

 Delivery of the CA certificate to the customer / subscriber:

This applies to both public and non-public CAs.

 Delivery of a CA certificate (Bridge CA) with the help of which a list of trustworthy non-
public CA certificates have been signed.

The CA certificate of the financial institution is a constituent of this list. The advantage of
such a signed list is brought to bear for the subscriber when the list contains the CA
certificates of a number of financial institutions that wish to grant bank-technical orders to
the subscriber via EBICS.

Delivery of the CA certificates to customers / subscribers SHOULD take place via electronic
means. Possible delivery methods include dispatch via email or delivery as a component of
the customer’s software, or as updates for the customer’s software.

In addition to the CA certificate, the financial institution CAN also deliver the TLS server
certificate itself to the customer / subscriber. In this case, the TLS certificate can be used as
a trust anchor during server authentication in the course of establishment of the TLS
connection.

In addition to the delivery of certificates, the financial institution MUST ensure that the
subscriber can verify the received certificate via a second, independent, communication
channel. For example, this can take place via publication of these certificates and their
fingerprints on the Internet.

In return, the subscriber is responsible for verification of the certificates that have been
received via different communication channels.

3.1.2.2 Server authentication
The server transmits its certificate to the client within the framework of the TLS handshake.
Successful verification of of the server certificate by the client is a prerequisite for
establishment of a TLS connection between client and server.

In this case, it is an X.509v3 certificate. Verification of X.509v3 certificates in general is
defined in RFC 3280, the particulars of verifying TLS server certificates within the framework
of the HTTPS handshake are described in RFC 2818.

The subscriber is responsible for using customer software that verifies the TLS certificate in
accordance with these specifications. They are also responsible for using customer software

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 17
 Status: Final Version 2.4.2

that uses the CA certificate or TLS server certificate that had been received in advance from
the financial institution as a trust anchor in the course of this verification.

3.1.3 HTTP(S) as a technical basic protocol
The Hypertext Transfer Protocol (HTTP) is a stateless data exchange protocol for the
transmission of data. HTTP is predominantly used in the “World Wide Web” (WWW) for the
transmission of websites.

The combination of HTTP and TLS as transport encryption is also referred to as “HTTPS”
(HTTP Secure). Port 443 (SSL) is reserved for this purpose and can be used in an
unrestricted manner by the majority of firewall configurations.

In the case of the EBICS protocol, the statelessness of HTTP forces the use of its own
session parameters that logically combine several communication steps into one transaction.

Communication between the customer and the financial institution takes place in a classical
manner via client/server roles. As before, the financial institution also takes on the (passive)
server role and the customer takes on the (active) client role. With this communications
schema, the client sends a request to the server via HTTP request; the server replies with an
HTTP response. The request can generally be made as a GET request (additional data
coded in the URL) or a POST request (additional data appended to the HTTP header); in the
context of EBICS, POST is used exclusively.

With EBICS, HTTP 1.1 MUST be used by both the client and the server.

3.1.4 XML as an application protocol language
The EBICS application protocol uses the HTTP(S) technical base protocol. XML (Extensible
Markup Language) has been selected as the protocol language on the application level. The
following reasons are given for this decision:

1. XML uses readable tags. Tag names/attributes can be selected in such a way
that their meaning is obvious even without documentation.

2. Freeware XML parsers are available for common operating systems and
programming languages.

3. XML messages can easily be expanded with additional elements and
attributes. It is not necessary to adapt the existing message sections to
maintain the syntactic correctness (“well-formedness”) of the message as a
whole.

4. XML schema is available as a standardised definition language for validation
of XML messages.

UTF-8 MUST be used for character encoding within the EBICS XML message. UTF-8 is
supported by all XML parsers and codes backwards compatible to ASCII.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 18
 Status: Final Version 2.4.2

The syntax of the XML messages is set with the help of so-called XSD files (XML Schema
Definition). The following XSD files have been defined for EBICS and can be retrieved via
http://www.ebics.org/H003 (“Schema Target Location”):

 “ebics_request.xsd” contains the XML schema for requests from the customer system

 “ebics_response.xsd” defines the XML schema for responses from the bank system

 “ebics_orders.xsd” contains order-specific data structures

 “ebics_types.xsd” lists simple EBICS type declarations.

In addition to these main schemas, the following specific variants for transactions that relate
particularly to key management can also be found at the same place:

 “ebics_keymgmt_request.xsd“ defines the XML schema for requests from the customer
system within the framework of key management.

 “ebics_keymgmt_response.xsd“ contains the XML schema for responses from the bank
system within the framework of key management.

The schema "ebics_signature.xsd" has been defined for submitting the ES in structured form.
It can be retrieved from the schema target location http://www.ebics.org/S001:

 This schema has been defined as an independent one in order that it can be applied
outside the EBICS domain. From version H003 on, the import of the aforementioned
name space is required for use of the ES in EBICS. It features the prefix "esig".

 The schema "ebics_signature" references structures of the XML signature standard of
the W3C (see chapter 3.8). This schema is stored at the same place under the name
"xmldsig-core-schema.xsd".

Each of the four XSD files with the extension "_request" or "_response" defines one or more
types of EBICS XML messages each of which possesses a different XML root element with
an unambiguous name.

For Standard EBICS messages "ebics_request.xsd“ defines the root element
ebicsRequest for customer system requests whereas "ebics_response.xsd“ defines the
root element ebicsResponse for responses of the bank system. For transactions of the key
management "ebics_keymgmt_request.xsd“ contains three additional XML messages for
customer requests with the root elements ebicsUnsecuredRequest,
ebicsUnsignedRequest, and ebicsNoPubKeyDigestsRequest. For key
management "ebics_keymgmt response.xsd“ defines the root element
ebicsKeyManagementResponse for responses of the bank system.

„ebics.xsd“ includes these four XML schema files and therefore contains the whole range of
definitions of the EBICS namespace "http://www.ebics.org/H003". By means of this file can
be verified that all global definitions in the EBICS namespace (elements and types) have

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 19
 Status: Final Version 2.4.2

unambiguous names. This feature of the EBICS XML protocol facilitates the processing of
EBICS XML messages with the help of standard XML tools because the declaration of the
XML root element and the EBICS namespace are already sufficient to determine the allowed
format for the complete XML message. A standard XML parser, for example, is able to
recognize by this XML fragment against which definition in the EBICS XSD files the whole
document has to be vaildated:
<ebicsRequest xmlns="http://www.ebics.org/H003" Version="H003">

Therefore, it is not essentially required to declare the attribute "xsi:schemalocation" . If
the attribute is declared as in the following example, the URL following the namespace URL
"http://www.ebics.org/H003" informs the XML parser/validator of the storage location of the
schema files: <ebicsRequest xmlns="http://www.ebics.org/H003"
Version="H003"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003
 http://www.ebics.org/H003/ebics_request.xsd">

By means of the following example taken from the XML schema file "ebics_request.xsd" the
referencing of EBICS XML elements and attributes for the EBICS root structure regarding
standard requests of the customer system (root element ebicsRequestand its sub-
elements) is illustrated:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 20
 Status: Final Version 2.4.2

Diagram 3: Root structure of the EBICS protocol

The XML root element for standard EBICS messages containing requests of the customer
system is called ebicsRequest. It contains some attributes with fundamental information
that are required for parsing the message as a whole (attribute group VersionAttrGroup):

 Version for the EBICS protocol version (e.g. “H003”)

 Revision for the EBICS protocol revision: This attribute SHOULD also be sent to allow
technical differentiation between several (compatible) revisions of the same protocol
version.

The following elements form the direct sub-structure of ebicsRequest:

 header: The XML tag contains technical information (so-called “technical control data”)
in the subtags:
- static for the technical control data that remains constant throughout the entire

transaction.
- HostID for the EBICS host ID for the identification of the bank's EBICS computer

system. The element HostID is contained in all EBICS request messages of the
customer system (for standard transactions as well as system-related transactions).
The EBICS host ID does not have to be identical with the host ID for the FTAM
process and is communicated to the customer by the financial institution.

- mutable for the mutable technical control data.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 21
 Status: Final Version 2.4.2

Both subtags of header MUST appear in the above sequence.

 AuthSignature: The identification and authentication signature according to the “XML
Signature” standard is disposed in this element. The XML tag MUST appear in all
messages with the exception of the order types INI, HIA, HSA and HPB (these order
types use their own XML schemas; see Chapter 4.4).

 body contains the actual order data, signatures (ES’s) and other data that is directly
related to the order or that is required for its evaluation.

The XML requests from the subscribers to the financial institutions are designated as EBICS
requests, the XML replies from the financial institutions are designated as EBICS responses.
The HTTP binding of an EBICS request and the associated EBICS response is: the EBICS
request is embedded in an HTTP POST request, the EBICS response is embedded in the
corresponding HTTP response.

A typical HTTP request appears as follows in EBICS (extract):

POST /ebics HTTP/1.1

Host: www.die-bank.de
Content-Type: text/xml; charset=UTF-8
Content-Length: 800

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003
 http://www.ebics.org/H003/ebics_request.xsd"
 Version="H003" Revision="1">

 <header authenticate="true">

 <static>

 <HostID>EBIXHOST</HostID>

 …

 </static>

 <mutable>

 …

 </mutable>

 </header>

 <AuthSignature>

 …

 </AuthSignature>

 <body>

 …

 </body>

</ebicsRequest>

A corresponding possible HTTP response is shown in the following extract:

HTTP/1.1 200 OK

Content-Type: text/xml; charset=UTF-8

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 22
 Status: Final Version 2.4.2

Content-Length: 1538

<?xml version="1.0" encoding="UTF-8"?>

<ebicsResponse xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003
 http://www.ebics.org/H003/ebics_response.xsd"
 Version="H003" Revision="1">

 <header authenticate="true">

 <static>

 …

 </static>

 <mutable>

 …

 </mutable>

 </header>

 <AuthSignature>

 …

 </AuthSignature>

 <body>

 …

 </body>

</ebicsResponse>

Further details on the structure of EBICS protocol messages and transaction details can be
found in Chapter 5. The formats of the XML messages for the standard responses of the
bank system and the system-related messages of the key management use different root
elements the structure of which is widely analogous to the standard request. The complete
XML schemas can be found in the separate HTML schema documentation.

The schema "ebics_hev.xsd" which is used for requests of EBICS versions supported by the
bank is provided at the schema target location http://www.ebics.org/H000 (see chapter 9.5).

3.2 Compression, encryption and coding of the order data
EBICS handles bank-technical order data in a transparent manner. This means: independent
of the specific data structure of different order types, order data is handled as a binary block
and is embedded in the XML structure. To this end, this order data MUST initially always be
ZIP-compressed before transmission, then hybrid encrypted (in accordance with process
E002) and the result finally base64-coded. Exceptions: In the case of key management order
types INI, HIA and HSA, transmission is unencrypted (see Chapter 4.4.1.6.1 for INI and HIA,
and Chapter 4.8.2 for HSA). The standards that define the ZIP algorithm and base64 format
that are valid in EBICS are specified in the Appendix (Chapter 16).

The data representation generated in this way is then to be set, for example, in the XML
element ebicsRequest/body/DataTransfer/OrderData without any further character
conversion.

The ZIP compression serves to reduce the data volume that is to be transmitted.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 23
 Status: Final Version 2.4.2

The actual data is symmetrically encrypted in the case of hybrid encryption. The transaction
key that is used for this purpose is again asymmetrically encrypted and is appended, for
example, in the form of the XML element
ebicsRequest/body/DataTransfer/DataEncryptionInfo/»
TransactionKey (see Chapter 6.2).

Encryption of the order data takes place in addition to TLS transport encryption. This ensures
that the order data is protected from unauthorised read access both on its way via public
networks (in addition to TLS) as well as on the other side of the TLS-protected connection
path.

For coding the binary stream, base64 only uses printable ASCII characters and thus ensures
that the order data reaches its destination in an unadulterated manner and can be evaluated
there as authentic.

3.3 Segmentation of the order data
Segmentation means the separation of large data volumes into smaller, individual
transmission segments.

With EBICS, segmentation of the order data takes place at the application protocol layer.
Order data may only be transmitted in an individual EBICS message if it does not exceed the
specified fixed size of 1 MB in compressed, encoded and base64-coded form. This applies
equally to transmit and download orders. If the 1 MB limit is exceeded, the compressed,
encrypted and base64-coded order data MUST be separated into segments, wherein the size
of each of these does not exceed the fixed segment size of 1 MB. The segments are then
transmitted in consecutive order in individual EBICS messages.

Further details on segmentation of order data can be found in Chapter 7.

3.4 Recovering the transmission of order data (recovery) [optional]
Recovery allows the transmission of an order to be continued after the occurrence of a
transport or processing error without necessitating the re-transmission of all order data
segments that have already successfully been transmitted.

EBICS defines a recovery process at the XML application protocol layer that is based on the
sequence of transmission of order data in several fixed, pre-determined steps. It is an
optimistic recovery process that dispenses with a separate synchronisation step since the
customer’s system generally knows the step from which transmission of the order in question
is to be continued.

Details relating to recovery can be found in Chapter 5.4.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 24
 Status: Final Version 2.4.2

3.5 Electronic signature (ES) of the order data
The “Electronic Signature” (ES) of the order data ensures the authenticity of the order data
on the other side of the TLS transmission path, independent of the compression, encryption,
coding and segmentation of the order data.

In the case of upload orders this is the deliberate signature of a subscriber that documents
the content commitment of the subscriber, in the case of download orders it is the signature
of the financial institution.

ES’s are generated in accordance with the Appendix (see Chapter 14), in EBICS Version
“H003” a minimum requirement is support of ES Version “A004” (see Appendix (Chapter
14)).

3.5.1 Subscriber’s ES
The order data of upload orders MUST be signed before delivery, i.e. provided with at least
one ES. Exceptions are the key management order types INI and HIA, which are not signed
in a bank-technical manner.

According to the signature process used and, regarding EBICS, supported by the bank, the
bank system can extract the hash value of the signed order data from a subscriber’s ES with
the help of the signatory’s public signature key.

The following signature classes are defined for the ES’s of subscribers, listed here in order
of reducing strength (“E” is the strongest and “T” is the weakest signature class):

 Single signature (type “E”)

 First signature (type “A”)

 Second signature (type “B”)

 Transport signature (type “T”)

An authorisation model for ES’s is defined within the financial institution by the assignment of
signature classes to subscribers. For example, subscribers with signature class A are entitled
to provide first signatures for orders. Detailed authorisation models CAN be defined
individually for institutions, wherein the signature authorisation of a subscriber can be
parameterised with regard to the order type and/or the amount limit and/or the account used.

The signature class of a subscriber’s given ES is the strongest class that can be assigned to
this ES in the authorisation model of the corresponding financial institution.

Signature authorisations of type “T” are assigned globally to subscribers or (in detailed
authorisation models) to subscribers in combination with certain order types. However, they
are not dependent on accounts or amount limits.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 25
 Status: Final Version 2.4.2

Transport signatures are not used for bank-technical authorisation of orders, but rather
merely for their (authorised) submission to the bank system.

Bank-technical ES’s are deemed to be ES’s of type “E”, “A” or “B”. Bank-technical ES’s are
used for the authorisation of orders. Orders can require several bank-technical ES’s, which
MUST then be supplied by different subscribers. Subscribers of different customers can also
be the signatory of an order.

A minimum number of required bank-technical ES’s will be agreed between the financial
institution and the customer for each supported order type.

Details on the format of the ES and its application for order authorisation are given in the
Appendix (Chapter 11.2).

3.5.2 Financial institution’s ES [planned]
The ES of the financial institution is a planned functionality of EBICS in Version “H003”. The
reason for this is the lack of a definitive legal view relating to this ES.

Preparations have been made both in this detailed concept and also in the EBICS XML
schema files that will facilitate the implementation of the following stipulations in future
versions of EBICS:

 mandatory ES of the hash value and the display file of the order that is to be signed in the
case of order type HVD (see Chapter 8.3.2.2).

 optional ES of download data in the case of download orders
For each subscriber and order type, it is configurable as to whether the subscriber has to
request the corresponding download data with or without the ES of the financial
institution.
See Chapter 3.12, Chapter 5.5.1.2.1 (process step “Verify file attribute”) and Chapter
5.6.1.1.1.

 Download of the financial institution’s public bank-technical key via order type HPB
See Chapter 4.4.2.2

 Verification of the hash value of the financial institution’s public bank-technical key within
the framework of transaction initialisation.
It is a component of each transaction initialisation to verify that the financial institution’s
public key that has been made available to the subscriber. Exceptions are the key
management order types INI, HIA, HPB, HSA, as well as the order type HEV for the
request of EBICS versions supported by the bank.
See Chapter 4.6.2 and Chapter 11.1.2.

 Binary format for the financial institution’s ES is analogous to the subscriber’s ES
See Appendix (Chapter 11.2.2).

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 26
 Status: Final Version 2.4.2

3.5.3 Representation of the ES’s in EBICS messages
The ES’s of an order are represented with the help of the XML elements
BankSignatureData (for the bank ES; planned feature which is defined in the schema file
“ebics_orders.xsd”) and UserSignatureData (for the subscriber ES, which is defined in
the schema file "ebics_signature.xsd"). Each of these substitutes the abstract element
EBICSSignatureData. Diagram 4 contains the graphical representation of
EBICSSignatureData: in case of the signature process A004, the individual ES’s are
contained in an element of the type OrderSignature. In case of the processes A005/A006,
these are contained in OrderSignatureData. ES’s are configured in accordance with the
Appendix (Chapter 14). OrderSignature contains the base64 coding of the corresponding
ES file. Since ES files of the signature process A004 do not contain customer IDs, in the
case of subscriber ES’s, the attribute PartnerID must also be filled out with the customer
ID of the signatory (= submitter). In the structured format OrderSignatureData for
signature processes from A005/A006 on, the customer ID is already contained in the element
PartnerID. The declaration of a differing customer ID for the ES distributed among a
number of customers is only possible with order type HVE by way of special order
parameters. The financial institution’s bank-technical ES is configured analogously to the
known subscriber’s bank-technical ES (see Appendix (Chapter 11.2.2) in comparison with
Appendix (Chapter 14)), wherein the attribute PartnerID is dispensed with in this case.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 27
 Status: Final Version 2.4.2

Diagram 4: XML structures BankSignatureData and UserSignatureData for the ES’s of an
order, both in binary and structured format

The following steps are necessary to embed the ES’s of an order in EBICS messages:

 Issue of an instance document to ebics_orders.xsd or ebics_signature.xsd that only
comprises the element BankSignatureData (bank ID) or UserSignatureData
(subscriber ID).

 ZIP compression, encryption, base64-coding of the instance document
Encryption takes place with the transaction key TransactionKey from the XML branch
ebicsRequest/body/DataTransfer/DataEncryptionInfo (see Chapter 6.2).

 The result is set in the element SignatureData in the branch DataTransfer of the
EBICS body (see Chapter 3.1.4).

3.6 Preliminary verification [optional]
In the case of upload orders, the subscriber CAN send information in a first transaction step
that the bank system CAN use for prevalidation of the order – insofar as it supports this
functionality. Prevalidation can comprise one or more of the following checks: Account
authorisation verification, limit verification, ES verification. If (technical) errors occur during
prevalidation, it is pointless to continue transmission of the order – particularly since the
order cannot be carried out.

Subscribers can discover whether a financial institution generally supports prevalidation via
the bank parameter query (order type HPD, returned XML structure
HPDResponseOrderData, attribute ProtocolParams/PreValidation@supported).
Supplied parameters for prevalidations that are not supported by a financial institution are
ignored by the financial institution.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 28
 Status: Final Version 2.4.2

More details on order type HPD can be found in Chapter 9.2. See Chapter 5.3 for details on
prevalidation.

3.7 Technical subscribers

EBICS customer systems can in turn be set up as client-server systems, so-called multi-user
systems. In this case, the server takes on the part of the EBICS client within the
communication with the bank system and as such is responsible for the transmission of
orders in accordance with the EBICS specification.

Towards the bank system, this customer-sided server acts as a "technical subscriber" which
essentially is administrated within the bank system like a (human) subscriber.

EBICS requests of a technical subscriber and a human subscriber differ from each other only
in the point that for all EBICS requests, the technical subscriber allocates his subscriber
identification to the field SystemID and generates the identification and authentication
signature for the EBICS request.

EBICS responses for the technical subscriber are always encrypted with the technical
subscriber's public encryption key.

The following applies to the technical subscriber:

- On principle, the technical subscriber's identification is assigned to the field SystemID
(in addition to the fields PartnerID and UderID) in the EBICS request. By the
presence of the field SystemID, the bank system detects that the request has been
sent by a technical subscriber.

- The technical subscriber issues the identification and authentication signature for the
EBICS request (except of the order types which do not require an identification and
authentication signature).

- The technical subscriber can execute all EBICS requests for the subscriber who is
stated in the field UserID.

- The technical subscriber cannot issue a bank-technical signature.
- The technical subscriber can submit files with a particular transport signature (D file

or submission to the VEU).
- The technical subscriber can submit files with bank-technical signatures of human

subscribers. In this case, the technical subscriber does not have to issue a transport
signature.

The following applies to the bank system's verification:

- The verification of the identification and authentication signature of the EBICS request
issued by the technical subscriber is performed on the basis of the contents of the
field SystemID.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 29
 Status: Final Version 2.4.2

- The order authorisation is verified by the contents of the fields PartnerID and UserID.
The content of the field SystemID is not relevant.
Only if the technical subscriber performs EBICS requests under his own name (the
field UserID contains the technical subscriber's identification), the according order
authorisation is required for the bank system.

- An account verification is not performed for technical subscribers.
- As usual, the electronic signature is verified independently of the contents of the

fields SystemID and UserID.

3.8 Identification and authentication signature
Identification and authentication of the subscriber or the customer system and the financial
institution is necessary in each transaction step to prevent the use of resources by
unauthorised persons at the bank’s end and to prevent unauthorised state alteration of
orders or data.

The identification and authentication signature represents an integral component of the
EBICS protocol as a main XML branch between the EBICS header and body data. It is
generated in accordance with the XML signature standard and has a number of tasks to fulfil:

1. Identification and authentication of the (technical) subscriber: With the help of
the identification and authentication signature, the bank system MUST convince
itself of the correctness of the (technical) subscriber identification of known
subscribers or customer systems.

2. Integrity of the control data/ES(s): Changes – even on the other side of the
TLS transmission path - to the ES(s) as well as the technical and order-related
data (with the exception of order data that is not acquired from the
identification and authentication signature but rather from the bank-technical
signature) are detected with the help of the identification and authentication
signature as long as the XML structure of the signed data remains unchanged.

The identification and authentication signature (in contrast to the ES that signs the order
data) is configured via the control data and via the ES(s) and MUST be supplied by both the
customer system and the bank system in every transaction step of each order type (with the
exception of the system-related order types INI, HIA, HSA and HPB, see Chapter 4.4).
Identification and authentication of the bank-technical ES(s) connects the order data that is
signed with this/these ES(s) to the remaining protocol information and thus prevents the
unauthorised exchange of orders together with their ES(s) within an EBICS transaction.

Details on the identification and authentication signature algorithms that are used can be
found in Chapter 11.1. It is also stipulated here that a canonisation process (C14N) transmits
the data in standardised format before generation and verification of the signature.
In addition to the XML signature’s inherent structures, precisely those elements (and their
substructures) that possess the attribute marker @authenticate="true" MUST go into the

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 30
 Status: Final Version 2.4.2

identification and authentication signature for signature configuration. The occurrence of
these attribute markers are stipulated in the XML schema.

The identification and authentication signature of each EBICS message MUST be verified by
the respective message recipient.

If the identification and authentication signature of an EBICS request cannot be successfully
verified, the bank system cannot assume that the EBICS request actually originates from the
corresponding (technical) subscriber.

In this event, the sender of the EBICS request will receive a corresponding error code
(EBICS_AUTHENTICATION_FAILED). Further details can be found in Chapters 5.5.1.2.1
and 5.5.1.2.2, in each case under the sub-heading “Verifying the authenticity of EBICS
requests”.

If, on the other hand, the identification and authentication signature of the EBICS response
cannot be successfully verified, the customer system cannot assume that the EBICS
response originates from the expected bank system. In this event, the relevant EBICS
transaction MUST be aborted by the customer system.

The settings of the customer’s software that is used to establish the connection to the bank
system, complying with the requirements of Chapter 3.1.2.2, MUST then be verified at the
customer’s end. Furthermore, it MUST be verified whether the financial institution’s public
keys are up-to-date (see also Chapter 5.5.1.2.1, sub-heading “Verifying the hash values of
the bank keys”).

3.9 X.509 data [planned]
For cryptographic algorithms (i.e. for identification and authentication, encryption, signature),
Version H003 of the EBICS protocol uses public keys as standard that have been exchanged
within the framework of subscriber initialisation between subscriber and financial institution
(for key management see Chapter 4)

However, wildcards are already provided for X.509 data (e.g. certificates, serial numbers,
distinguished names, etc.) in successor versions to EBICS Version “H003”. The structures of
the W3C are referenced directly.
The optional field for this is located in the EBICS XML schemas “ebics_request.xsd” and
“ebics_keymgmt_request.xsd”, for example in the path ebicsRequest/body/X509Data.
The type definition uses the specification from the XML signature (see Diagram 5).

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 31
 Status: Final Version 2.4.2

Diagram 5: X509DataType

This cannot be used in standard requests yet. No business related specifications have yet
been set for filling out or evaluating this field.
Already from EBICS schema version H003 on, order types of the key management allow
additional X.509 data to be transmitted optionally together with public keys like certificates.
Information as to whether X.509 data is already supported by the financial institution is given
in order type HPD (download bank parameter) with the field ProtocolParams/X509Data.
See Chapter 9.2 for details.

3.10 Supported order types
All standardised, system-related and reserved order types in accordance with the complete
list (see Appendix Chapter 13) are supported by transparent embedding of the order data
into the XML structure.

The following hitherto-known order types are no longer supported, with the following reasons
(exceptions):

 BPD (download bank parameter file) has been replaced by the new mandatory order type
HPD (download bank parameter). However, the original BPD structure can still be found
in the XML return data (XML element BankParameters) for the optional order types
HKD (download customer’s customer and subscriber data) and HTD (download
subscriber’s customer and subscriber data). For further details see Chapters 9.3 and 9.4.

 PWA (send password amendment): Passwords are not used with EBICS. For this
reason, PWA is dropped without replacement.

 VPB (download financial institution’s public encryption key) has been integrated into the
new order type HPB (download public bank key).

 VPK (send customer’s public encryption key) has been integrated into the new order type
HIA (send subscriber’s public encryption and identification and authentication key). In

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 32
 Status: Final Version 2.4.2

addition, the keys are now no longer generated per customer but rather per subscriber of
a customer.

The newly-added order types

 FUL (upload file with any format) [optional]

 FDL (download file with any format) [optional]

 HAA (download retrievable order types) [optional]

 HCA (amendment of the subscriber keys for identification and authentication and
encryption) [mandatory]

 HCS (amendment of the subscriber keys for ES, identification and authentication and
encryption) [mandatory]

 HEV (download supported EBICS versions) [mandatory]

 HIA (transmission of the subscriber keys for identification and authentication and
encryption within the framework of subscriber initialisation) [mandatory]

 HSA (transmission of the subscriber keys for identification and authentication and
encryption within the framework of subscriber initialisation for subscribers that have
remote access data transmission via FTAM) [optional]

 HKD (download customer’s customer and subscriber data) [optional]

 HPB (transfer of the public bank keys) [mandatory]

 HPD (download bank parameter) [mandatory]

 HTD (download subscriber’s customer and subscriber data) [optional]

 HVD (retrieve VEU state) [mandatory]

 HVE (add VEU signature) [mandatory]

 HVS (VEU cancellation) [mandatory]

 HVT (retrieve VEU transaction details) [mandatory]

 HVU (download VEU overview) [mandatory]
are described in detail in Chapters 8 and 9 (HIA: Chapter 4.4.1, HCA: Chapter 4.6.1, HSA:
Chapter 4.8.2).

3.11 Order parameters
The element OrderParams has been integrated into the fixed control data (under
ebicsRequest/header/static/OrderDetails) for the transmission of order
parameters that are not part of the order data. Depending on the order type, this abstract
element has a specific concrete characteristic (see also Diagram 6):

 HVDOrderParams in the case of order parameters for order type HVD

 HVEOrderParams in the case of order parameters for order type HVE

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 33
 Status: Final Version 2.4.2

 HVSOrderParams in the case of order parameters for order type HVS

 HVTOrderParams in the case of order parameters for order type HVT

 HVUOrderParams in the case of order parameters for order type HVU

 FULOrderParams in the case of order parameters for order type FUL

 FDLOrderParams in the case of order parameters for order type FDL

 StandardOrderParams in the case of order parameters for order types from the
Appendix Chapter 13 or document “EBICS Annex 2 Order Types”, that transmit a date
range (e.g. STA, except FDL)

 GenericOrderParams in the case of order parameters for all other order types that
have a requirement for transmission of additional information from the customer system
to the bank system.

The structures of the order parameters for order types HVD, HVE, HVS, HVT and HVU are
explained in greater detail in Chapter 8.3. The structures for order types FUL and FDL are
explained in greater detail in Chapter 9.6.

The StandardOrderParams define a date range via the optional element DateRange and
the subelements Start and End (both of type date).

With the GenericOrderParams, any number of Name-Value pairs can be specified via the
optional element Parameter, wherein the type of the value can be fixed with the optional
attribute Type (default is string).

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 34
 Status: Final Version 2.4.2

Diagram 6: Possible characteristics for the order parameters (OrderParams)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 35
 Status: Final Version 2.4.2

3.12 Flow of the EBICS transactions
This chapter contains a simplified description of the protocol sequence for the transmission
of a remote data transmission order via EBICS that allows for the stipulations in the previous
chapter.

The transmission takes place in an EBICS transaction that can comprise several transaction
steps. A transaction step is a pair, comprising an EBICS request and the corresponding
EBICS response.

The first transaction step is the transaction initialisation step. Subscriber-related authorisation
verifications are carried out in this step, such as e.g. the verification of order type
authorisation. Successful authorisation verification is a prerequisite for continuation of the
transaction. Furthermore, the ES’s of the order are transmitted in this transaction step: in the
case of upload orders, the ES’s of the signatory are transmitted in the EBICS request; in the
case of download orders, possibly the financial institution’s bank-technical ES is transmitted
in the EBICS response.

After transaction initialisation, a number of transaction steps usually follow in which the
segments of order data are transmitted sequentially and in consecutive order.

Upload orders that are sent to the bank system via EBICS can be authorised using two
different methods:

Method 1: Authorisation by means of one or more bank-technical ES

The bank-technical ES’s of an order file must be given by different subscribers. In case of the
VEU, these subscribers may in special cases belong to different customers (customer-ID-
spanning signature). The ES’s can be submitted to the financial institution by way of three
different order types, while every ES submitted with a single EBICS transaction originates
from the same customer.

1. Submission of the order data together with one or more ES's by way of an upload order

with the order attributes "OZHNN".
All ES's that are submitted in this manner originate from the customer of the party that
submitted the order. If the transmitted ES's are not sufficient for the bank-technical
approval, the order is transferred to the VEU. In this case, several options for a
subsequent authorisation exist:

2. Submission of further bank-technical ES's in an independent EBICS transaction with the

order attributes "UZHNN" to the same order type and order number
For this EBICS transaction the transaction steps for the transmission of the order data
segments are omitted.
ES's that are subsequently submitted in this manner originate from the customer of the
party that submitted the order.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 36
 Status: Final Version 2.4.2

3. Submission of outstanding bank-technical ES’s with the help of order type HVE
If an ES is submitted via an HVE transaction, this ES has to originate from the customer
of the party that submitted the HVE transaction:
HVE permits the special case of the customer-ID-spanning signature because the ES's
submitted via HVE do not necessarily have to originate from the customer of the party
that submits the orders.

Method 2: Authorisation by means of an accompanying note signed by hand
For the transmission of the order file the order attributes of the upload order are set to
"DZHNN".
Within the framework of the EBICS transaction, an ES of signature class "T" is transmitted
together with the data of the order. The order is not passed on to the VEU but directly to the
bank-specific post-processing.
If the submitting subscriber possesses the authorisation for issuing a bank-technical ES in
the bank system and signatures are submitted with order attributes "DZHNN" these
signatures are strictly assessed only as transport signatures. The order must not be passed
to the VEU either.

The meaning and admissible settings of the order attributes are described in the Appendix
(Chapter 12.3).

Transmission of an upload order with a (compressed, encoded and base64-coded) order
data volume of 3 MB is represented by way of example with the help of the sequence
diagram in Diagram 7. The EBICS transaction relating to an upload order is terminated as
soon as the last order data segment has been successfully transmitted to the financial
institution.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 37
 Status: Final Version 2.4.2

customer system bank system

transfer of data segment 1 for transaction xxx

transaction initialisation, transfer of EUs

ok, unique transaction ID = xxx

transfer of data segment 2 for transaction xxx

transfer of data segment 3 for transaction xxx

ok

ok

ok

Diagram 7: Example of the sequence of an EBICS transaction for an upload order

Transmission of a download order with a (compressed, encoded and base64-coded) order
data volume of 3 MB is represented by way of example with the help of the sequence
diagram in Diagram 8. The subscriber should set the order attributes as equal to

 “OZHNN”
if he wants to request the download data with the bank-technical ES of the financial
institution.
In Version “H003” of EBICS the ES of the financial institutions is only planned (see
Chapter 3.5.2).

 “DZHNN”
when requesting the download data without the bank-technical ES of the financial
institution.

In the case of download orders, receipt of the download data is confirmed with an
acknowledgement step. After this, the EBICS transaction for the download order is
terminated.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 38
 Status: Final Version 2.4.2

customer system bank system

transfer of data segment 1 for transaction xxx

transaction initialisation, transfer of EUs

ok, unique transaction ID = xxx

transfer of data segment 2 for transaction xxx

transfer of data segment 3 for transaction xxx

ok

ok

ok

customer system bank system

request data segment 2 for transaction xxx

transaction initialisation

ok, unique transaction ID = xxx, transfer of data segment 1

request data segment 3 for transaction xxx

receipt for transaction xxx (acknowledgement)

ok, transfer of data segment 2

ok, transfer of data segment 3

ok

Diagram 8: Example of the sequence of an EBICS transaction for a download order

Further details on the sequence of EBICS transactions can be found in Chapter 5.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 39
 Status: Final Version 2.4.2

4 Key management

4.1 Overview of the keys used

The EBICS protocol provides three RSA key pairs for each subscriber. These are used for
the following purposes:

 bank-technical/technical ES of the order data that the subscriber/client system sends to
the bank system

 identification and authentication of the subscriber by the bank system via identification
and authentication signature

 decryption of the (symmetrical) transaction key used to encrypt the order data that the
subscriber retrieves from the bank system.

Based on their use, one also talks of

 public / private bank-technical keys

 public / private identification and authentication keys

 public / private encryption keys

EBICS allows the use of three different key pairs per subscriber. In doing this, EBICS
promotes the use of at least two different key pairs for each subscriber:

 One key pair is used exclusively for the bank-technical electronic signature.

 The use of one single key pair is allowed for identification and authentication of the
subscriber by the bank system AND decryption of transaction keys.

Analogously to the subscriber keys, EBICS provides three different RSA key pairs for the
bank system. These are used for the following purposes:

 bank-technical ES of the order data that is retrieved by a subscriber from the bank
system
In EBICS Version “H003” the financial institution’s bank-technical ES is only planned (see
Chapter 3.5.2).

 identification and authentication of the financial institution by the subscriber via
identification and authentication signature

 Decryption of the (symmetrical) transaction key to encrypt bank-technical order data sent
by a subscriber to the financial institution.

The same restrictions as for the subscriber keys apply with regard to the use of an RSA key
pair for different purposes.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 40
 Status: Final Version 2.4.2

The subscriber’s keys are connected to processes that the subscriber would like to use for
generation/verification of the ES, for generation/verification of the identification and
authentication signature and for the encryption of order data. These processes are identified
by unambiguous Versions so that different subscribers can use e.g. different processes for
the ES. A prerequisite of EBICS is that the respective processes are administrated in the
bank system for each subscriber.

Version “H003” of the EBICS protocol allows for the use of the following processes:

 “X002” for the identification and authentication signature

 ”A004“,”A005“, or ”A006“ for the ES

 “E002” for the encryption.

Details of these processes can be found in the Appendix (Chapter 11.1, Chapter 11.2 and
Chapter 11.3).

Subscribers of the same customer generally use the same processes for identification and
authentication signature, encryption and ES.

A subscriber’s orders can be delivered by a technical subscriber if both subscribers use the
same processes for identification and authentication signature, encryption and bank-
technical signature. In this case, administration of the public bank keys for all subscribers
that wish to work with the same processes can be centralised at the customer’s end.

4.2 Representation of the public keys
EBICS defines the new order types HIA, HCA, HSA, HCS and HPB, whose bank-technical
order data constitutes public keys of the financial institution or the subscriber. For these order
types, embedding of the public keys in EBICS messages takes place using newly-defined
types based on the XML schema (see schema definition file ebics_types.xsd). These types
are contained in the following table:

Key type XML type
Identification and authentication key AuthenticationPubKeyInfoType
Bank-technical key SignaturePubKeyInfoType
Encryption key EncryptionPubKeyInfoType

The graphical representation of the XML types AuthenticationPubKeyInfoType,
SignaturePubKeyInfoType, EncryptionPubKeyInfoType is contained in Diagram 9,
Diagram 10, and finally Diagram 11.

The XML structures are composed in a similar manner to one another: They contain the
value of the public key as a combination of exponent and modulus. In addition, information
relating to an X.509 certificate can be provided. Moreover, the version of the process for
configuration/verification of the identification and authentication signature (see element

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 41
 Status: Final Version 2.4.2

AuthenticationVersion) is a component of the identification and authentication key.
Analogously, the version of the encryption process is a component of the encryption key and
the version of the bank-technical ES is a component of the bank-technical key.

Diagram 9: Definition of the XML schema type AuthenticationPubKeyInfoType

Diagram 10: Definition of the XML schema type SignaturePubKeyInfoType

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 42
 Status: Final Version 2.4.2

Diagram 11: Definition of the XML schema type EncryptionPubKeyInfoType

4.3 Actions within key management
Actual processing of the key management upload orders must take place synchronously to
their transmission via EBICS. Hence processing must be completed before the final EBICS
response of this transmission is sent to the subscriber.

This requirement applies in the case of INI and HIA (see Chapter 4.4.1) as well as HSA (see
Chapter 4.8) so that execution of subscriber initialisation is not delayed unnecessarily. It also
applies equally in the case of SPR (see Chapter 4.5) so that the subscriber revocation is
immediately activated. Subsequently-initialised EBICS transactions for the transmission of a
bank-technical order are rejected at EBICS protocol level until the subscriber has again
attained the state “Ready”. (Subscriber ES’s that have been successfully verified before the
suspension also remain valid after the suspension. Such an ES can continue to be used for
authorisation of an open order within the framework of the VEU).

Finally, this requirement also applies for all PUB, HCS, and HCA (see Chapter 4.6.1) to allow
successful processing of immediately-following EBICS transactions from the relevant
subscriber that already use the updated keys. (Subscriber ES’s that have been successfully
verified before execution of PUB or HCS, respectively, also remain valid after the processing
of PUB or HCS and the associated amendment of the bank-technical subscriber key. Such
an ES can continue to be used for authorisation of an open order within the framework of the
VEU).

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 43
 Status: Final Version 2.4.2

4.4 Initialisation
A range of prerequisites must be fulfilled by the subscriber of a customer in order for them to
be able to implement bank-technical EBICS transactions with a particular financial institution.

The basic prerequisite is the conclusion of a contract between customer and financial
institution. In this contract it will be agreed as to which business transactions (bank-technical
order types) the customer will conduct with the financial institution, which accounts are
concerned, which of the customer’s subscribers work with the system and the authorisations
that these subscribers will possess.

If the customer does not yet have access to a corresponding customer product, they will
receive the client software and the financial institution’s access data (bank parameters) after
conclusion of the contract. The financial institution will set up the customer and subscriber
master data in the bank system in accordance with the contractual agreements. In doing this,
the individual subscribers will receive the state “New”.

Details of the contractual agreements are not a subject of this standard, they are to be
arranged individually between the customer and the financial institution.

Other prerequisites are successful subscriber initialisation and download of the financial
institution’s public keys by the subscriber. The necessary steps that must be taken by the
financial institution, the customer and the subscriber and the chronological dependencies of
these steps are contained in Diagram 12. Diagram 13 shows an example of a process by
way of a sequence diagram. The state of the public bank keys at the subscriber’s end is
shown on the life-line of the subscriber system. Correspondingly, the state of the public
subscriber keys at the bank’s end and the state of the subscriber themselves are shown on
the lifeline of the bank system. Details of these diagrams are explained in the following
chapters.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 44
 Status: Final Version 2.4.2

customer system bank system

transfer of data segment 1 for transaction xxx

transaction initialisation, transfer of EUs

ok, unique transaction ID = xxx

transfer of data segment 2 for transaction xxx

transfer of data segment 3 for transaction xxx

ok

ok

ok

customer system bank system

request data segment 2 for transaction xxx

transaction initialisation

ok, unique transaction ID = xxx, transfer of data segment 1

request data segment 3 for transaction xxx

receipt for transaction xxx (acknowledgement)

ok, transfer of data segment 2

ok, transfer of data segment 3

ok

INI execution
via EBICS

HIA execution
via EBICS

Key pair generation for
authentication signature and encryption

Generate the initialisation letter for
the public EU-key

Generate the initialisation letter for
the public authentication key
and the public encryption key

Key pair generation for the EU

Mail the manually signed
initialisation letter to the credit institute

Mail the manually signed
initialisation letter to the credit institute

Release of the public EU-key,
public authentication key,

public encryption key

Release of the user

Retrieve the credit institute‘s public keys:
HPB via EBICS

Compare the credit institute‘s public keys
as retrieved from 2 different communication channels

independent from each other

[Key pairs already exist]

else

Sign agreement between
credit institute and partner

Sign agreement between
credit institute and partner

Possibly installation of client software;
Customize according to

the bank parameter

Add the users of the partner to
the credit institute‘s User Management

Bank Partner User

Diagram 12: Necessary steps prior to actual processing of business transactions via EBICS

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 45
 Status: Final Version 2.4.2

Public authentication key credit institute [missing]
Public encryption key credit institute [missing]

Public EU-key credit institute [missing]

User [Partly initialised(INI)]]
Public authentication key User [missing]
Public encryption key User [missing]
Public EU-key User [New]

Public authentication key credit institute [missing]
Public encryption key credit institute [missing]

Public EU-key credit institute [missing]

User [Initialised]
Public authentication key User [New]

Public encryption key User [New]
Public EU-key User [New]

User [Ready]
Public authentication key User [Released]
Public encryption key User [Released]
Public EU-key User [Released]

Public authentication key credit institute [missing]
Public encryption key credit institute [missing]
Public EU-key credit institute [missing]

Public authentication key credit institute [New]
Public encryption key credit institute [New]
Public EU-key credit institute [New]

User [Ready]
Public authentication key User [Released]
Public encryption key User [Released]
Public EU-key User [Released]

INI-request(public EU-key User)

INI-response

HIA-request(public authentication key User,
public encryption key User)

HIA-response

Initialisation letter INI

Initialisation letter HIA

HPB-request

HPB-response(public authentication key credit institute,
public EU-key credit institute,
public encryption key credit institute)

Public authentication key credit institute [Released]
Public encryption key credit institute [Released]
Public EU-key credit institute [Released]

User [Ready]
Public authentication key User [Released]
Public encryption key User [Released]
Public EU-key User [Released]

Public authentication key credit institute [missing]
Public encryption key credit institute [missing]

Public EU-key credit institute [missing]

Customer system Bank system

Release of User‘ public keys
and of User itself

Comparison credit institute‘s
public keys

User [New]
Public authentication key User [missing]

Public encryption key User [missing]
Public EU-key User [missing]

Diagram 13: Process example: Subscriber initialisation followed by download and verification
of of the bank keys

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 46
 Status: Final Version 2.4.2

4.4.1 Subscriber initialisation

4.4.1.1 General description
Transmission of the subscriber’s public keys to the bank system is necessary for initialisation
of the subscriber with the financial institution. The supported versions for the ES, the
encryption and the identification and authentication signature are a component of the bank
parameters. The subscriber’s bank-technical key must be newly-generated if the subscriber
does not have a suitable bank-technical key or does not wish to use an existing bank-
technical key for the new bank connection. The same applies for the encryption key and the
identification and authentication key.

The subscriber transmits their public keys to the financial institution by two independent
communication paths:

 via EBICS by means of the following system-related order types:
- INI: send the public bank-technical key
- HIA: send the public identification and authentication key and the public encryption

key.

Transmission of the public subscriber keys to the financial institution via INI and HIA is
referred to as subscriber initialisation

 by post with initialisation letters signed by the subscriber.

The use of signed initialisation letters permits the financial institution to:

 verify the authenticity of the public subscriber keys transmitted via EBICS as a
prerequisite for the activation of subscribers

 guarantee the reproducibility of subscribers’ key histories by storing the initialisation
letters.

The sequence for processing of INI and HIA is not fixed, but within the framework of
subscriber initialisation precisely one INI order and precisely one HIA order will be
implemented. Transmission of the public subscriber keys via two separate orders in any
order requires definition of the subscriber states “Partially initialised(INI)” and “Partially
initialised(HIA)”. Within the framework of subscriber initialisation, the subscriber takes on
the corresponding state depending on whether the first successful order is INI or HIA.

4.4.1.2 INI
Processing of INI is permissible if the state of the respective subscriber is “New”,
“Suspended” or “Partially initialised(HIA)”. INI comprises a single EBICS request/response
pair. The following applies for the EBICS request of INI:

 it does not require an identification and authentication signature since the subscriber’s
public identification and authentication key has not yet been activated by the financial
institution and hence cannot be used for verification.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 47
 Status: Final Version 2.4.2

 it does not contain a bank-technical signature, since the subscriber’s public bank-
technical key is being transmitted for the first time in this request. This bank-technical key
cannot be used by the financial institution to verification the bank-technical signature
since its authenticity has not yet been ascertained.

 it contains the order data, i.e. the subscriber’s public bank-technical key in unencrypted
form since the subscriber does not yet have the financial institution’s public encryption
key (at least in the event of first initialisation).

The flow diagram in Diagram 14 represents the processing at the bank’s end that takes place
on receipt of an INI request. Error situations that result from an invalid combination of
customer/subscriber ID or an inadmissible subscriber state are not passed directly to the
sender of the INI request. Instead, the sender receives the technical error code
EBICS_INVALID_USER_OR_USER_STATE. INI does not give any errors of the type
“Unknown subscriber” or “Inadmissible subscriber state” so that potential attackers are not
given precise information about the validity of subscriber IDs or the state of subscribers. On
the other hand, internal documentation must take place on the part of the financial institution
to record the precise reason for the error.

The flow diagram provides verification of the subscriber state so that INI requests are
rejected on the EBICS level if the subscriber state is inadmissible for INI. Admissible states
for INI are: “New”, “Suspended” and “Partially initialised(HIA)”. Here, the state of the
subscriber is verified from the header data of the request. The order data of the INI request
(see Chapter 4.4.1.6.1) merely contains the subscriber whose bank-technical key is to be
transmitted. For this reason, the subscriber from the header data should correspond with the
subscriber from the order data. The EBICS protocol does not provide a verification for this
correspondence. However, before actual processing of the order the state of the subscriber
is verified (again) which is a part of the order data of INI.

Processing of an INI order can return the following error codes:

 EBICS_KEYMGMT_UNSUPPORTED_VERSION_SIGNATURE
This business related error occurs when the order data contains an inadmissible version
of the bank-technical signature process

 EBICS_KEYMGMT_KEYLENGTH_ERROR_SIGNATURE
This business related error occurs when the order data contains a bank-technical key of
inadmissible length

 EBICS_INVALID_ORDER_DATA_FORMAT
This business related error occurs when the order data does not correspond with the
designated format (see Chapter 4.4.1.6.1)

 EBICS_INVALID_USER_OR_USER_STATE
This technical error occurs when the order data contains a subscriber that is either
unknown or whose state is inadmissible for INI. The following subscriber states are
admissible: New, Suspended, Partially initialised (HIA).

 For Return codes relating to certificates, refer to Annex 1

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 48
 Status: Final Version 2.4.2

INI order check and execution

INI response creation

Sending INI response

Receiving INI request

[RC ≠ 0]

[RC = 0]

RCT = 0
RCF = RC

RCT = RC
RCF = 0

else

[RC is a
non-technical error]

RCT = 0
RCF = 0

[RC ≠ 0]

[RC = 0]

State check for user
Valid states: New, Locked,

Partly Initialised(HIA)

RCT = EBICS_INVALID_USER_OR_USER_STATE
RCF = 0

Validity check
user ID/ partner ID

[RC ≠ 0]

[RC = 0]

RCT = EBICS_INVALID_USER_OR_USER_STATE
RCF = 0

Diagram 14: Processing of an INI request at the bank’s end

The EBICS response for INI does not contain an identification and authentication signature of
the financial institution since the subscriber does not yet have the financial institution’s public
identification and authentication key with which they can carry out a verification.

In Diagram 13 INI is carried out before HIA, and correspondingly the subscriber changes
from the state “New” to the state “Partially initialised(INI)”. The state “Partially initialised(INI)”
means:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 49
 Status: Final Version 2.4.2

 The subscriber’s bank-technical key is available to the bank system, although it has not
yet been activated

 The bank system does not (yet) have the subscriber’s public identification and
authentication key or public encryption key.

In this state, the subscriber can only carry out one of the following two actions:

 Implement order type HIA and then transfer into the state “Initialised”:
Orders that are not equal to HIA that are submitted by the subscriber in this state are
rejected by the bank system. Bank-technical signatures of the subscriber relating to
existing orders are evaluated as invalid if the subscriber has the state “Partially
initialised(INI)” at the time of verification.

 Have themselves suspended by the financial institution via telephone call:
Following this, the only option is re-initialisation of the subscriber.

After the successful processing of INI, the subscriber sends a signed initialisation letter for
INI. See Chapter 4.4.1.4 for details of the content of the initialisation letter.

4.4.1.3 HIA
Processing of HIA is permissible if the state of the subscriber is “New”, “Suspended” or
“Partially initialised (INI)”. HIA comprises a single EBICS request/response pair. The
following applies for the EBICS request of HIA:

 it does not contain an identification and authentication signature, since the subscriber’s
public identification and authentication key is being sent for the first time in this request.
This subscriber’s public identification and authentication key cannot be used by the
financial institution to verify the identification and authentication signature since its
authenticity has not yet been ascertained.

 it does not contain a bank-technical signature since the subscriber’s public bank-technical
key has not yet been activated by the financial institution and hence cannot be used for
verification.

 it contains the order data, i.e. the subscriber’s public encryption key and public
identification and authentication key in unencrypted form since the subscriber does not
yet have the financial institution’s public encryption key (at least on the event of first
initialisation).

The flow diagram in Diagram 15 represents the processing at the bank’s end that takes place
on receipt of an HIA request. In an analogous manner to INI, error situations that result from
an invalid combination of customer/subscriber ID or an inadmissible subscriber state are also
here not passed directly to the sender of the HIA request. Instead, the sender receives the
technical error code EBICS_INVALID_USER_OR_USER_STATE. HIA does not give any
errors of the type “Unknown subscriber” or “Inadmissible subscriber state” so that potential
attackers are not given precise information about the validity of subscriber IDs or the state of
subscribers. Also analogously to INI, internal documentation must take place on the part of
the financial institution to record the precise reason for the error.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 50
 Status: Final Version 2.4.2

The flow diagram provides verification of the subscriber state so that HIA requests are
rejected on the EBICS level if the subscriber state is inadmissible for HIA. Admissible states
for HIA are: “New”, “Suspended” and “Partially initialised(INI)”. Here, the state of the
subscriber is verified from the header data of the request. The order data of the HIA request
(see Chapter 4.4.1.6.1) merely contains the subscriber whose identification and
authentication key and encryption key are to be sent. For this reason, the subscriber from the
header data should correspond with the subscriber from the order data. The EBICS protocol
does not provide a verification for this correspondence. However, before actual processing of
the order the state of the subscriber is verified (again) which is a part of the order data of
HIA.

Processing of an HIA order can return the following error codes:

 EBICS_KEYMGMT_UNSUPPORTED_VERSION_ENCRYPTION
This business related error occurs when the order data contains an inadmissible version
of the encryption process

 EBICS_KEYMGMT_UNSUPPORTED_VERSION_AUTHENTICATION
This business related error occurs when the order data contains an inadmissible version
of the identification and authentication signature process

 EBICS_KEYMGMT_KEYLENGTH_ERROR_ENCRYPTION
This business related error occurs when the order data contains an encryption key of
inadmissible length

 EBICS_KEYMGMT_KEYLENGTH_ERROR_AUTHENTICATION
This business related error occurs when the order data contains an identification and
authentication key of inadmissible length

 EBICS_INVALID_ORDER_DATA_FORMAT
This business related error occurs when the order data does not correspond with the
designated format (see Chapter 4.4.1.6.1)

 EBICS_INVALID_USER_OR_USER_STATE
This technical error occurs when the order data contains a subscriber that is either invalid
or whose state is inadmissible for HIA. The following subscriber states are admissible:
New, suspended, Partially initialised (INI).

 EBICS_KEYMGMT_NO_X509_SUPPORT
This business related error occurs when a public key of type ds:X509Data has been
sent but the financial institution only supports type ebics:PubKeyValueType.

 For Return codes relating to certificates, refer to Annex 1

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 51
 Status: Final Version 2.4.2

HIA order check and execution

HIA response creation

Sending HIA response

Receiving HIA request

[RC ≠ 0]

[RC = 0]

RCT = 0
RCF = RC

RCT = RC
RCF = 0

else

[RC is a
non-technical error]

RCT = 0
RCF = 0

[RC ≠ 0]

[RC = 0]

State check for user
Valid states: New, Locked,
Partly Initialised(INI)

RCT = EBICS_INVALID_USER_OR_USER_STATE
RCF = 0

Validity check
user ID/ partner ID

[RC ≠ 0]

[RC = 0]

RCT = EBICS_INVALID_USER_OR_USER_STATE
RCF = 0

Diagram 15: Processing an HIA request at the bank’s end

The EBICS response for HIA does not contain an identification and authentication signature
of the financial institution since the subscriber does not yet have the financial institution’s
public identification and authentication key with which they can carry out a verification.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 52
 Status: Final Version 2.4.2

The meaning of the state “Partially initialised (HIA)“, that has not been taken into
consideration in Diagram 13 is as follows:

 The bank system has the subscriber’s public identification and authentication key and
public encryption key. Neither of these have been activated by the bank system

 The bank system does not (yet) have the subscriber’s public bank-technical key.

In this state, the subscriber can only carry out one of the following two actions:

 Carry out order type INI:
Orders that are not equal to INI that are submitted by the subscriber in this state are
rejected by the bank system. Bank-technical signatures of the subscriber relating to
existing orders are evaluated as invalid if the subscriber has the state “Partially
initialised(HIA)” at the time of verification.

 Have themselves suspended by the financial institution via telephone call:
Following this, the only option is re-initialisation of the subscriber.

After the successful processing of HIA, the subscriber sends a signed initialisation letter for
HIA to the financial institution. See Chapter 4.4.1.4 for details of the content of the
initialisation letter.

4.4.1.4 Initialisation letters
Initialisation letters for INI contain the public bank-technical subscriber key, initialisation
letters for HIA contain the subscriber’s public identification and authentication key and the
subscriber’s public encryption key. In addition to the public subscriber keys, the initialisation
letters contain the following data:

 User name (optional): customer software-internal subscriber’s name

 Date: Date of processing of the corresponding EBICS order

 Time: Time of processing of the corresponding EBICS order

 Recipient bank

 Subscriber ID

 Customer ID.

In addition to the public subscriber key, the initialisation letter contains the following data:

 Purpose of the public subscriber key:

 - Bank-technical electronic signature

 - Identification and authentication signature

 - Encryption.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 53
 Status: Final Version 2.4.2

 Processes:

 - Bank-technical electronic signature process: A004, A005, or A006

 - Identification and authentication signature process: X002

 - Encryption process: E002.

 Exponent length specification

 Exponent of the public key in hexadecimal representation

 Modulus length specification

 Modulus of the public key in hexadecimal representation

 Hash value of the public key in hexadecimal representation:
- The initialisation letter for INI contains the RIPEMD-160 hash value of the public

bank-technical key (in the case of A004) or the SHA-256 hash value of the public
key (in the case of A005 or A006, respectively). The composition of the hash value
is described in chapter 14 for both processes.

- The initialisation letter for HIA contains the SHA-256 hash value of the public
identification and authentication key and the SHA-256 hash value of the public
encryption key. The SHA-256 hash values of the public keys X002, E002 as well as
of the A005 and A006 keys are composed by concatenating the exponent with a
blank character and the modulus in hexadecimal representation (using lower case
letters) without leading zeros (as to the hexadecimal representation). The resulting
string has to be converted into a byte array based on US ASCII code.

Initialisation letters for INI contain the public bank-technical subscriber key of the user,
initialisation letters for HIA contain the subscriber’s public identification and authentication
key and the subscriber’s public encryption key. Examples of initialisation letters can be found
in the Appendix (Chapter 11.5.1).

4.4.1.5 Activation of the subscriber by the financial institution
After successful processing of INI and HIA, the subscriber is initially set to the state
“Initialised”: the bank system has all necessary public keys for the subscriber, but it will not
have activated them yet. Subscribers that are set to the state “Initialised” cannot submit
orders or signatures via EBICS: all attempts to do so will be rejected by the bank system.

After successful verification of the initialisation letters by the financial institution, the public
subscriber keys are activated and the subscriber’s state is set to “Ready” in the bank system.
The state “Ready” means that the bank has all of the information necessary for the
subscriber to successfully implement submission of orders or signatures. See also Diagram
13. The subscriber can also especially download the financial institution’s so-called bank
parameters via the order type HPD (see Chapter 9.2).

Diagram 16 clarifies once again the state transitions of a subscriber as described above.
Deletion of subscribers from bank systems’ subscriber administration databases is not

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 54
 Status: Final Version 2.4.2

covered in this standard. For this reason, a further state “Deleted” and an end state will not
be displayed.

New

Partly initialised (INI)

Initialised

Ready

Partly initialised (HIA)

Locked

INI

INI

HIA

HIA

SPR, call credit institutePUB & HCA
or HCS

User release by the credit
institute

HIA INI

Diagram 16: State transition diagram for subscribers

The (renewed) processing of INI or HIA is not admissible in the subscriber state “Ready”.
This is to prevent unintentional transfer of the subscriber from the state “Ready” to the state
“Partially initialised(INI)” or “Partially initialised(HIA)”. The result of this would be that the
affected subscriber would not be able to implement any further bank-technical orders for the
time being.

Subscribers that are set to the state “Ready” must firstly suspend their remote access data
transmission to the bank system before they can carry out renewed subscriber initialisation.
Details on the suspension of subscribers can be found in Chapter 4.5.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 55
 Status: Final Version 2.4.2

4.4.1.6 Description of the EBICS messages

4.4.1.6.1 Format of the order data

Furthermore, for reasons of compatibility with the FTAM process, during signature process
A004 INI supports the data structure (public key file) that has been defined for INI files (see
Chapter 14.2.5.4) in the “Specification for FTAM connection” (Appendix 2 of the “DFÜ-
Abkommen”).
When using the ES in structured form (from signature process A005/A006 on) the order data
for INI is an instance document that conforms with ebics_signature.xsd and comprises the
top-level element SignaturePubKeyOrderData.
SignaturePubKeyOrderData is defined as follows via the XML schema:

Diagram 17: Definition of the XML schema element SignaturePubKeyOrderData for INI order
data (identical to PUB, see respective chapter)

The order data for HIA is an instance document that conforms with ebics_orders.xsd and
comprises the top-level element HIARequestOrderData. HIARequestOrderData is
defined as follows via the XML schema:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 56
 Status: Final Version 2.4.2

Diagram 18: Definition of the XML schema element HIARequestOrderData for HIA order data

The order data for INI and HIA are each compressed and base64-coded and embedded into
the corresponding EBICS request.

4.4.1.6.2 Description and example messages

This chapter describes the EBICS messages for order types INI and HIA. INI and HIA
requests are instance documents that conform with ebics_keymgmt_request.xsd with the
top-level element ebicsUnsecuredRequest. INI and HIA responses are instance
documents that conform with ebics_keymgmt_response.xsd with the top-level element
ebicsKeyManagementResponse.

The data that is a component of these messages is listed here. The corresponding XML
elements are given in brackets in XPath notation. The following conventions apply:

- Data that is fundamentally optional is marked “(optional)”.
- Data that may only be missing under certain conditions is instead marked

“(conditional)”.
- Optional XML elements of the EBICS messages that are missing in the description

may not appear in the EBICS message.
- Optional XML elements in the EBICS messages that appear in the description without

the designation “(optional)” or “(conditional)” must always be placed in accordance
with the description.

This description is supplemented by examples.

 Transmission of the following data in the INI request (see example in Diagram 19)
Host ID of the EBCIS bank computer system
(ebicsUnsecuredRequest/header/static/HostId)
Subscribers (ebicsUnsecuredRequest/header/static/PartnerID,

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 57
 Status: Final Version 2.4.2

ebicsUnsecuredRequest/header/static/UserID) whose public bank-technical
key is to be sent to the financial institution
(Optional) technical subscribers
(ebicsUnsecuredRequest/header/static/PartnerID,
ebicsUnsecuredRequest/header/static/SystemID)
SystemID can be contained in the message if the customer system is a multi-user
system. Since INI requests do not contain an identification and authentication signature
and the order data is unencrypted, declaration of the SystemID is optional.
- (Optional) information on the customer product
(ebicsUnsecuredRequest/header/static/Product)
- Order type (ebicsUnsecuredRequest/header/static/OrderDetails/OrderType) set to
“INI”
- Order number (ebicsUnsecuredRequest/header/static/OrderDetails/OrderID)
- Order attributes (ebicsUnsecuredRequest/header/static/OrderDetails/OrderAttribute)
set to “DZNNN”
- Security medium for the subscriber’s bank-technical
key(ebicsUnsecuredRequest/header/static/SecurityMedium)
The admissible settings are listed in the Appendix (Chapter 12.4)
- Order data (ebicsUnsecuredRequest/body/DataTransfer/OrderData).

<?xml version="1.0" encoding="UTF-8"?>
<ebicsUnsecuredRequest
 xmlns="http://www.ebics.org/H003" xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003
 http://www.ebics.org/H003/ebics_keymgmt_request.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <HostID>EBIXHOST</HostID>
 <PartnerID>CUSTM001</PartnerID>
 <UserID>USR100</UserID>
 <OrderDetails>
 <OrderType>INI</OrderType>
 <OrderID>A101</OrderID>
 <OrderAttribute>DZNNN</OrderAttribute>
 </OrderDetails>
 <SecurityMedium>0200</SecurityMedium>
 </static>
 <mutable/>
 </header>
 <body>
 <DataTransfer>
 <!--INI file according to chapter 14.2.5.4, compressed and base64 encoded -->
 <OrderData>
 …
 </OrderData>
 </DataTransfer>
 </body>
</ebicsUnsecuredRequest>

Diagram 19: EBICS request for order type INI

 Transmission of the following data in the INI response (see example in Diagram 20)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 58
 Status: Final Version 2.4.2

- Bank-technical return code (ebicsKeyManagementResponse/body/ReturnCode)

- Technical return code
(ebicsKeyManagementResponse/header/mutable/ReturnCode)

- Technical report text (ebicsKeyManagementResponse/header/mutable/ReportText)

- (Optional) time stamp for the last updating of the bank parameters
(ebicsKeyManagementResponse/body/TimestampBankParameter).

<?xml version="1.0" encoding="UTF-8"?>
<ebicsKeyManagementResponse
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003
 http://www.ebics.org/H003/ebics_keymgmt_response.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static/>
 <mutable>
 <ReturnCode>000000</ReturnCode>
 <ReportText>[EBICS_OK] OK</ReportText>
 </mutable>
 </header>
 <body>
 <ReturnCode authenticate="true">000000</ReturnCode>
 </body>
</ebicsKeyManagementResponse>

Diagram 20: EBICS response for order type INI

 Transmission of the following data in the HIA request (analogous to INI, see example
in Diagram 21)

- Host ID of the EBICS bank computer system
(ebicsUnsecuredRequest/header/static/HostId)

- Subscribers (ebicsUnsecuredRequest/header/static/PartnerID,
ebicsUnsecuredRequest/header/static/UserID) whose public
identification and authentication key as well as public encryption key are to be sent
to the financial institution

- (Optional) technical subscribers
(ebicsUnsecuredRequest/header/static/PartnerID,
ebicsUnsecuredRequest/header/static/SystemID)
SystemID can be contained in the message if the customer system is a multi-user
system. Since HIA requests do not contain an identification and authentication
signature and the order data is unencrypted, declaration of SystemID is optional.

- (Optional) information on the customer product
(ebicsUnsecuredRequest/header/static/Product)

- Order type
(ebicsUnsecuredRequest/header/static/OrderDetails/OrderType)
set to “HIA”

- Order number
(ebicsUnsecuredRequest/header/static/OrderDetails/OrderID)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 59
 Status: Final Version 2.4.2

- Order attributes
(ebicsUnsecuredRequest/header/static/OrderDetails/OrderAttrib
ute) set to “DZNNN”

- Security medium for the subscriber’s bank-technical
key(ebicsUnsecuredRequest/header/static/SecurityMedium) set to
“0000”.
The security medium for the subscriber’s bank-technical key is set to “0000” since
HIA orders neither transmit bank-technical keys nor contain ES’s.

- Order data (ebicsUnsecuredRequest/body/DataTransfer/OrderData).

<?xml version="1.0" encoding="UTF-8"?>
<ebicsUnsecuredRequest
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003
 http://www.ebics.org/H003/ebics_keymgmt_request.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <HostID>EBIXHOST</HostID>
 <PartnerID>CUSTM001</PartnerID>
 <UserID>USR100</UserID>
 <OrderDetails>
 <OrderType>HIA</OrderType>
 <OrderID>A101</OrderID>
 <OrderAttribute>DZNNN</OrderAttribute>
 </OrderDetails>
 <SecurityMedium>0000</SecurityMedium>
 </static>
 <mutable/>
 </header>
 <body>
 <DataTransfer>
 <!-- XML instance document using root element HIARequestOrderData in accordance with
ebics_orders.xsd, compressed and base64 encoded -->
 <OrderData>
 …
 </OrderData>
 </DataTransfer>
 </body>
</ebicsUnsecuredRequest>

Diagram 21: EBICS request for order type HIA

 Transmission of the following data in the HIA response (analogous to INI, see

example Diagram 22):

- Bank-technical return code (ebicsKeyManagementResponse/body/ReturnCode)

- Technical return code
(ebicsKeyManagementResponse/header/mutable/ReturnCode)

- Technical report text
(ebicsKeyManagementResponse/header/mutable/ReportText)

- (Optional) time stamp for the last updating of the bank parameters
(ebicsKeyManagementResponse/body/TimestampBankParameter).

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 60
 Status: Final Version 2.4.2

<?xml version="1.0" encoding="UTF-8"?>
<ebicsKeyManagementResponse
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003
 http://www.ebics.org/H003/ebics_keymgmt_response.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static/>
 <mutable>
 <ReturnCode>000000</ReturnCode>
 <ReportText>[EBICS_OK] OK</ReportText>
 </mutable>
 </header>
 <body>
 <ReturnCode authenticate="true">000000</ReturnCode>
 </body>
</ebicsKeyManagementResponse>

Diagram 22: EBICS response for order type HIA

4.4.2 Download of the financial institution’s public keys

4.4.2.1 General description
The subscriber downloads all public keys from the financial institution by means of a
specially-provided system-related order type (HPB). Download of the public bank keys
necessitates the subscriber state “Ready”, only then can the processes be established that
the subscriber wishes to implement for the identification and authentication signature, bank-
technical signature and encryption.

Processing of HPB merely requires a single EBICS request / response pair. The EBICS
request of HPB contains the subscriber’s identification and authentication signature itself, or
that belonging to a technical subscriber of the same customer, via the control data.

Diagram 23 represents the processing at the bank’s end that takes place on receipt of an
HPB request. The replay test takes place in the same way as with the bank-technical order
types (see Chapter 11.4). Thus HPB returns the technical error
EBICS_TX_MESSAGE_REPLAY when the HPB request is a recovered message. In the
same way, in the case of bank-technical order types, verification of the customer/subscriber
ID, the subscriber state and the identification and authentication signature takes place within
the process step “Verifying authenticity of the EBICS request” (see Chapter 5.5.1.2.1,
Diagram 46).

This can produce the following error codes:

 EBICS_AUTHENTICATION_FAILED
This technical error occurs when the subscriber’s (or the technical subscriber’s)
identification and authentication signature could not be verified successfully

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 61
 Status: Final Version 2.4.2

 EBICS_USER_UNKNOWN
This technical error occurs when the technical user’s identification and authentication
signature could be successfully verified but the (non-technical) subscriber is unknown to
the financial institution

 EBICS_INVALID_USER_STATE
This technical error occurs when the technical user’s identification and authentication
signature could be successfully verified and the (non-technical) subscriber is known to
the financial institution but does not have the state “Ready”.

After successful processing of the “Message authenticity verification”, the actual processing
of the HPB order does not produce any further specific technical or bank-technical errors.

Supply of the requested
HPB order data:

credit institute's public keys

HPB response creation

Sending HPB response

Receiving HPB request

Replay Test

[RC = 0]

RCT = EBICS_MESSAGE_REPLAY
RCF = 0

[RC ≠ 0]

Authentication check of the
EBICS request

RCT = 0
RCF = 0

[RCT = 0 und RCF = 0]

else

Diagram 23: Processing of an HPB request at the bank’s end

The following applies in the case of the EBICS response:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 62
 Status: Final Version 2.4.2

 it does not contain an identification and authentication signature, since the financial
institution’s public identification and authentication key is being transmitted for the first
time in this response. This financial institution’s public identification and authentication
key cannot be used by the subscriber to verify the identification and authentication
signature since its authenticity has not yet been ascertained.

 it does not contain a bank-technical electronic order data signature, i.e. the public bank
key, since the financial institution’s bank-technical key is being transmitted for the first
time in this response. This public bank-technical key cannot be used by the subscriber to
verify the bank-technical ES since its authenticity has not yet been ascertained.

 it contains the order data, i.e. the public bank key, in encrypted format since the
subscriber’s public encryption key has already been activated by the financial institution.

The subscriber has all necessary public bank keys after successful processing of HPB,
although they must verify them before they are used: as shown in Diagram 13 the state of
these keys at the subscriber’s end is set to “New”. When they are set to the state “New”,
bank keys may not be used for communication via EBICS since their authenticity is not
ensured.

In order to guarantee the authenticity of the bank keys, the financial institution must ensure
that the subscriber receives the public bank keys and/or the hash-values via a second,
independent, communication channel (e.g. via the financial institution’s website). The
subscriber is responsible for verification of the bank keys. The process for verification of the
bank keys is not a part of this standard. It is dependent on the implementation of the EBICS
client systems that ensure that subscribers only use the public keys after they have been
successfully verified.

After successful verification, the state of the public bank keys at the subscriber’s end
changes from “New” to “Activated”. This state change is also shown in Diagram 13 Only
those bank keys that have the state “Activated” may be used for communication via EBICS.

In EBICS Version “H003” the ES of the financial institutions is only planned (see Chapter
3.5.2). Diagram 13 takes into account the state of the bank’s public bank-technical key at the
subscriber’s end in preparation for future EBICS versions.

4.4.2.2 Description of the EBICS messages

4.4.2.2.1 Format of the order data

The order data for HPB is an instance document that conforms with ebics_orders.xsd and
comprises the top-level element HPBResponseOrderData. HPBResponseOrderData is
defined as follows via the XML schema:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 63
 Status: Final Version 2.4.2

Diagram 24: Definition of the XML schema element HPBRequestOrderData for HPB order
data

In Version “H003” of the EBICS protocol the ES of the financial institutions is only planned
(see Chapter 3.5.2). The element SignaturePubKeyInfo is defined in preparation for
future versions with maximum frequency (maxOccurs) being equal to 0.

The order data is compressed, encrypted and base64-coded, and embedded into the
corresponding HPB response.

4.4.2.2.2 Description and example messages

This chapter describes the EBICS messages for order type HPB. HPB requests are instance
documents that conform with ebics_keymgmt_request.xsd with the top-level element
ebicsNoPubKeyDigestsRequest. On the other hand, HPB responses are instance
documents that conform with ebics_keymgmt_response.xsd with the top-level element
ebicsKeyManagementResponse.

The data that is a component of these messages is listed here. The corresponding XML
elements are given in brackets in XPath notation. The following conventions apply:

- Data that is fundamentally optional is marked “(optional)”.
- Data that may only be missing under certain conditions is instead marked

“(conditional)”
- Optional XML elements of the EBICS message that are missing in the description

may not be present in the EBICS message
- Optional XML elements in the EBICS messages that appear in the description without

the designation “(optional)” or “(conditional)” must always be placed in accordance
with the description.

This description is supplemented with an example of an EBICS request / response pair for
order type HPB.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 64
 Status: Final Version 2.4.2

 Transmission of the following data in the HPB request (see example in Diagram 25):
- Host ID of the EBCIS bank computer system

(ebicsNoPubKeyDigestsRequest/header/static/HostId)

- Combination of Nonce and Timestamp, necessary to avoid replaying old EBICS
messages (ebicsNoPubKeyDigestsRequest/header/static/Nonce,
ebics/header/static/Timestamp)

- Subscribers (ebicsNoPubKeyDigestsRequest/header/static/PartnerID,
ebics/header/static/UserID) who initiates the HPB request

- (Conditional) technical subscribers
(ebicsNoPubKeyDigestsRequest/header/static/PartnerID,
ebics/header/static/SystemID)
SystemID must be present if the customer system is a multi-user system. The
technical subscriber is responsible for the generation of the EBICS requests
(including the identification and authentication signatures) that belong to orders
that are submitted or bank-technically signed by the subscriber.

- (Optional) information on the customer product
(ebicsNoPubKeyDigestsRequest/header/static/Product)

- Order type
(ebicsNoPubKeyDigestsRequest/header/static/OrderDetails/Order
Type) set to “HPB”

- Order attributes
(ebicsNoPubKeyDigestsRequest/header/static/OrderDetails/Order
Attribute) set to “DZHNN”

- Security medium for the subscriber’s bank-technical
key(ebicsNoPubKeyDigestsRequest/header/static/SecurityMedium)
set to “0000”.
The security medium for the subscriber’s bank-technical key is set to “0000” since
HPB orders neither require ES’s nor transmit bank-technical subscriber keys.

- Identification and authentication signature of the technical subscriber, if such is
available, otherwise the identification and authentication signature of the
subscriber themselves (ebicsNoPubKeyDigestsRequest/AuthSignature)
The identification and authentication signature includes all XML elements of the
EBICS request whose attribute value for @authenticate is equal to “true”. The
definition of the XML schema “ebics_keymgmt_request.xsd“ guarantees that the
value of the attribute @authenticate is equal to “true” for precisely those
elements that must be signed

<?xml version="1.0" encoding="UTF-8"?>
<ebicsNoPubKeyDigestsRequest
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003
 http://www.ebics.org/H003/ebics_keymgmt_request.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 65
 Status: Final Version 2.4.2

 <static>
 <HostID>EBIXHOST</HostID>
 <Nonce>234AB2340FD2C23035764578FF3091FA</Nonce>
 <Timestamp>2005-01-30T15:40:45.123Z</Timestamp>
 <PartnerID>CUSTM001</PartnerID>
 <UserID>USR100</UserID>
 <OrderDetails>
 <OrderType>HPB</OrderType>
 <OrderAttribute>DZHNN</OrderAttribute>
 </OrderDetails>
 <SecurityMedium>0000</SecurityMedium>
 </static>
 <mutable/>
 </header>
 <AuthSignature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"/>
 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmldenc#sha256"/>
 <ds:DigestValue>…here hash value authentication...</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>…here signature value authentication...</ds:SignatureValue>
 </AuthSignature>
 <body/>
</ebicsNoPubKeyDigestsRequest>

Diagram 25: EBICS request for order type HPB

 Transmission of the following data in the EBICS response for HPB (see example in
Diagram 26):

- Bank-technical return code (ebicsKeyManagementResponse/body/ReturnCode)

- Technical return code
(ebicsKeyManagementResponse/header/mutable/ReturnCode)

- Technical report text
(ebicsKeyManagementResponse/header/mutable/ReportText)

- (Conditional) information for encryption of the order data and possibly the ES of the
order data
(ebicsKeyManagementResponse/body/DataTransfer/DataEncryptionI
nfo), if no errors of a technical or bank-technical nature have occurred.
In particular, DataEncryptionInfo also contains the asymmetrically-encrypted
transaction key
(ebicsKeyManagementResponse/body/DataTransfer/DataEncryptionI
nfo/TransactionKey)

- (Conditional) the order data
(ebicsKeyManagementResponse/body/DataTransfer/OrderData), if no
errors of a technical or bank-technical nature have occurred

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 66
 Status: Final Version 2.4.2

- (Optional) time stamp for the last updating of the bank parameters
(ebicsKeyManagementResponse/body/TimestampBankParameter).

<?xml version="1.0" encoding="UTF-8"?>
<ebicsKeyManagementResponse
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003
 http://www.ebics.org/H003/ebics_keymgmt_response.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static/>
 <mutable>
 <ReturnCode>000000</ReturnCode>
 <ReportText>[EBICS_OK] OK</ReportText>
 </mutable>
 </header>
 <body>
 <DataTransfer>
 <DataEncryptionInfo authenticate="true">
 <EncryptionPubKeyDigest Version="E002"
Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">..here hash value of public key for
encryption ..</EncryptionPubKeyDigest>
 <!-- asymmetricly encrypted transaction key -->
 <TransactionKey>…</TransactionKey>
 </DataEncryptionInfo>
 <!-- XML instance document using root element HPBResponseOrderData in accordance with
ebics_orders.xsd, compressed and base64 encoded -->
 <OrderData>

…
 </OrderData>
 </DataTransfer>
 <ReturnCode authenticate="true">000000</ReturnCode>
 </body>
</ebicsKeyManagementResponse>

Diagram 26: EBICS response for order type HPB

4.5 Suspending a subscriber

4.5.1 Alternatives
If there is any suspicion that subscriber keys have been compromised, the subscriber MUST
suspend their access authorisation to all bank systems that use the compromised key/s.

Subscribers that wish to suspend their remote access data transmission to a bank system
can do this in two ways:

 The SPR transaction is a standard upload transaction transmitting the ES file exclusively
containing the signature of the subscriber who is to be suspended with the help of a
dummy file. The dummy file contains one blank character only and is not being
transmitted. The corresponding EBICS request not only has to contain this signature but
also an identification and authentication signature. The identification and authentication
signature may also be provided by a technical subscriber.
The SPR order does not comprise any additional order data and hence does not contain
any order file either.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 67
 Status: Final Version 2.4.2

 In addition, the subscriber has the possibility of instigating the suspension via a second
communication channel, e.g. by telephone via a specific contact of the financial
institution. If a subscriber key gets lost or damaged, only this alternative is selectable.

After successful execution of the suspension, the subscriber has the state “Suspended” and
renewed initialisation of the subscriber is required.

4.5.2 Revoking a subscriber via SPR
SPR is a regular upload transaction. See Chapter 5.5 for a detailed description of the flow of
the transaction (including its behaviour in cases of errors). Subsequently, only differences
and supplements are given.

As for SPR only an ES file is transmitted, the customer system sends only a request with the
order attribute UZHNN. Processing is already being executed during the phase of
initialisation, i.e. the bank system provides no transaction ID with the response.

The bank system has to ensure that the SPR request contains the identification and
authentication signature of the subscriber who is to be revoked, or of the technical
subscriber, respectively.
 Verification of the customer/subscriber ID, the subscriber state and the identification and
authentication signature takes place within the process step “Verifying authenticity of the
EBICS request” (see Chapter 5.5.1.2.1, Diagram 46).

The ES file has to contain a valid electronic signature of the subscriber who is to be
suspended by way of a file containing one blank character only.

The subsequent actual synchronous suspension of the subscriber does not return any further
specific technical or bank-technical errors.

4.6 Key changes

4.6.1 Changing the subscriber keys
With EBICS 2.3 and earlier versions, keys had to be changed by means of the order types
PUB (change of the bank-technical key) and HCA (change of the identification and
authentication key as well as the encryption key). These changes could be executed
independently. In order to simplify the key management at the customer's as well as the
bank's end, with EBICS 2.4 the order type HCS is introduced allowing all three keys of a
single transaction to be modified. Therefore, order type HCS comprises PUB and HCA.
HCS – as well as PUB and HCA – require the bank-technical ES of the respective subscriber
in the ES version supported in each case (e.g. A004, A005, A006), but not the additional
dispatch of initialisation letters. For reasons of compatibility, the order types PUB and HCA
can still be used as alternatives to HCS.
Depending on their state, the subscriber has two possibilities for updating their public
subscriber keys on the bank system:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 68
 Status: Final Version 2.4.2

 With the state “Suspended”, subscriber initialisation MUST fundamentally be carried out so
that bank-technical orders can be transmitted via EBICS. Hence suspension of access
authorisation followed by subscriber initialisation is an alternative for activation of
subscriber keys. Subscriber initialisation takes place using order types INI and HIA, and
requires the additional sending of initialisation letters. The subscriber initialisation process
is described in Chapter 4.4.1. Information on the subject of suspension of a subscriber’s
access authorisation can be found in Chapter 4.5.

 When they have the state “Ready”, subscribers can update their public subscriber keys
using the two system-related order types PUB, HCS and HCA without having to go the
long way round with subscriber initialisation. In each case, PUB, HCS and HCA require
the ES of the respective subscriber but not the additional dispatch of initialisation letters.
On the one hand, this simplifies the key change process but on the other hand it removes
the possibility of using initialisation letters to document a subscriber’s key history. It is the
responsibility of the financial institution to document the key change via PUB, HCS and
HCA so that it remains verifiable.

The subject of this chapter is the detailed description of key changing via PUB, HCS and
HCA.

4.6.1.1 General description
Subscribers with the state “Ready” can update their public subscriber keys by using one of
the following system-related order types:

 PUB: update the public bank-technical key
 HCA: update the public identification and authentication key and the public encryption

key
 HCS: update the public bank-technical subscriber key, the public identification and

authentication key and the public encryption key

PUB, HCS and HCA are regular upload transactions whose sequence (including behaviour in
error situations) is described in detail in Chapter 5.5. Contained therein is Diagram 51 which
describes the sequence of EBICS request handling by the bank during the data transfer
phase of an upload request. A part of this procedure is the process step “Verifying and
processing of the order”. This step returns the following error codes for the order type PUB:

 EBICS_KEYMGMT_UNSUPPORTED_VERSION_SIGNATURE
This business related error occurs when the order data contains an inadmissible version
of the bank-technical signature process

 EBICS_KEYMGMT_KEYLENGTH_ERROR_SIGNATURE
This business related error occurs when the order data contains a bank-technical key of
inadmissible length

 EBICS_INVALID_ORDER_DATA_FORMAT
This business related error occurs when the order data does not correspond with the
designated format (see Chapter 4.4.1.6.1)

 EBICS_USER_UNKNOWN
This technical error occurs when the subscriber that is a component of the PUB order
data is not a registered subscriber

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 69
 Status: Final Version 2.4.2

 EBICS_UNKNOWN_USER_STATE
This technical error occurs when the subscriber that is a component of the PUB order
data does not have the state “Ready”

 EBICS_SIGNATURE_VERIFICATION_FAILED
This business related error occurs when the ES of the subscriber in question could not be
successfully verified.

 For Return codes relating to certificates, refer to Annex 1

For HCA, the process step “Examination and processing of the order” returns the following
error codes:

 EBICS_KEYMGMT_UNSUPPORTED_VERSION_ENCRYPTION
This business related error occurs when the order data contains an inadmissible version
of the encryption process

 EBICS_KEYMGMT_UNSUPPORTED_VERSION_AUTHENTICATION
This business related error occurs when the order data contains an inadmissible version
of the identification and authentication signature process

 EBICS_KEYMGMT_KEYLENGTH_ERROR_ENCRYPTION
This business related error occurs when the order data contains an encryption key of
inadmissible length

 EBICS_KEYMGMT_KEYLENGTH_ERROR_AUTHENTICATION
This business related error occurs when the order data contains an identification and
authentication key of inadmissible length

 EBICS_INVALID_ORDER_DATA_FORMAT
This business related error occurs when the order data does not correspond with the
designated format (see Chapter 4.4.1.6.1)

 EBICS_USER_UNKNOWN
This technical error occurs when the subscriber that is a component of the HCA order
data is not a registered subscriber

 EBICS_UNKNOWN_USER_STATE
This technical error occurs when the subscriber that is a component of the HCA order
data does not have the state “Ready”

 EBICS_KEYMGMT_NO_X509_SUPPORT
This business related error occurs when a public key of type ds:X509Data has been
transmitted but the financial institution only supports type ebics:PubKeyValueType.

 EBICS_SIGNATURE_VERIFICATION_FAILED
This business related error occurs when the ES of the subscriber in question could not be
successfully verified.

 For Return codes relating to certificates, refer to Annex 1

HCS being a combination of PUB and HCA, all error codes in process step "Verifying and
processing of the order" listed under PUB and HCA can be reported.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 70
 Status: Final Version 2.4.2

Either PUB and HCA or HCS must be submitted by the subscriber whose keys are to be
updated. Each order type PUB, HCS, and HCA require precisely one ES that must be
supplied by the subscriber whose keys are to be updated. The signature class of this ES is
irrelevant.

PUB-request (public EU-key_new)

PUB-Response

User system Bank system

User‘s key pairs currently used with EBICS:
private/public authentication key_old

private/ public encryption key_old
private/ public EU-key_old

User‘s new key pairs for EBICS:
private/ public EU-key_new

User‘s released public keys for EBICS:
private/public authentication key_old

private/ public encryption key_old
private/ public EU-key_old

User[Ready]

User‘s key pairs currently used with EBICS:
private/public authentication key_old

private/ public encryption key_old
private/ public EU-key_new

User‘s released public keys for EBICS:
private/public authentication key_old

private/ public encryption key_old
private/ public EU-key_new

User[Ready]

Diagram 27: Changing the bank-technical subscriber key via PUB

Diagram 27 represents the state of the public subscriber keys and the subscriber before and
after processing of PUB. The following applies to the processing of PUB:

 The order data, i.e. the subscriber’s new public bank-technical key, is compressed,
encrypted and finally base64-coded, and is embedded into the EBICS messages.

 The order data is signed via ES by the subscriber whose public bank-technical key is to
be updated. The subscriber’s old bank-technical key (that is activated at this point) is
used for this ES.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 71
 Status: Final Version 2.4.2

HCA-request (public authentication key_new,
public encryption key_new)

HCA-response

User system Bank system

User‘s key pairs currently used with EBICS:
private/public authentication key_old

private/ public encryption key_old
private/ public EU-key_old

User‘s new key pairs for EBICS:
private/public authentication key_new

private/ public encryption key_new

User‘s released public keys for EBICS:
private/public authentication key_old

private/ public encryption key_old
private/ public EU-key_old

User[Ready]

User‘s key pairs currently used with EBICS:
private/public authentication key_new

private/ public encryption key_new
private/ public EU-key_old

User‘s released public keys for EBICS:
private/public authentication key_new

private/ public encryption key_new
private/ public EU-key_old

User[Ready]

Diagram 28: Changing the authentication key and encryption key via HCA

Diagram 28 shows the state of the subscriber keys and the subscriber before and after the
processing of HCA. In addition, the following applies to the processing of HCA:

 The order data, i.e. the subscriber’s new public identification and authentication key and
new public encryption key, is compressed, encrypted and finally base64-coded, and is
embedded into the EBICS messages.

 HCA requests contain the identification and authentication signature of the affected
subscriber or a technical subscriber. The identification and authentication signature of the
affected subscriber is generated with the old identification and authentication signature
(that is activated at this point). The financial institution’s EBICS responses contain the
financial institution’s identification and authentication signature.

By using HCS all keys are changed. The order type HCS can be regarded as an alternative
to PUB and HCA which allow the keys for the bank-technical electronic signature (PUB) and
for the identification and authentication signature and encryption (HCA) only to be changed
separately.
Therefore, the process looks like follows:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 72
 Status: Final Version 2.4.2

HCS -request (public authentication key_new,
public encryption key_new, EU-key_new)

HCS -response

User system Bank system

User‘s key pairs currently used with EBICS:
private/public authentication key_old

private/ public encryption key_old
private/ public EU-key_old

User‘s new key pairs for EBICS:
private/public authentication key_new

private/ public encryption key_new

User‘s released public keys for EBICS:
private/public authentication key_old

private/ public encryption key_old
private/ public EU-key_old

User[Ready]

User‘s key pairs currently used with EBICS:
private/public authentication key_new

private/ public encryption key_new
private/ public EU-key_new

User‘s released public keys for EBICS:
private/public authentication key_new

private/ public encryption key_new
private/ public EU-key_new

User[Ready]

private/ public EU-key.new

Diagram 29: Changing the bank-technical subscriber key, the authentication key, and
encryption key via HCS

4.6.1.2 Format of the order data
PUB and HCS support the data structure for INI files (or the public key file, see Chapter
14.2.5.1).
When using the ES in structured form (from signature process A005/A006 on), the order data
for PUB is an instance document that conforms with ebics_signature.xsd and comprises the
top-level element SignaturePubKeyOrderData (in compliance with INI, XML scheme
representation see in chapter 4.4.1.6)

SignaturePubKeyOrderData is defined as follows via the XML schema:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 73
 Status: Final Version 2.4.2

Diagram 30: Definition of the XML schema element SignaturePubKeyOrderData for PUB
order data (identical to INI, see own chapter)

The order data for HCA is an instance document that conforms with ebics_orders.xsd and
comprises the top-level element HCARequestOrderData. HCARequestOrderData is
defined as follows via the XML schema:

Diagram 31: Definition of the XML schema element HCARequestOrderData for HCA order
data

The order data for HCS is an instance document that conforms with ebics_orders.xsd and
comprises the top-level element HCSRequestOrderData. HCSRequestOrderData is
defined as follows via the XML schema:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 74
 Status: Final Version 2.4.2

Diagram 32: Definition of the XML schema element HCSRequestOrderData for HCS order
data

The order data for PUB, HCS, and HCA are compressed, encrypted and base64-coded, and
embedded into the corresponding EBICS request.

4.6.2 Changing the bank keys
The process for updating bank keys is not a part of this standard. The duration of validity of
the bank keys is not part of the EBICS interface. From the point of view of the EBICS
protocol, one set of currently-valid bank keys exist at any time and for any admissible
combination of processes for the identification and authentication signature, encryption and
the ES. In Version H003, this consists of precisely the following keys:

 Private/public encryption key for process E002

 Private/public identification and authentication key for process X002

 Private/public bank-technical key for process A004, A005 or A006.

In EBICS there are no transition periods where more than one key is valid for the same
process. Keys changed at the bank’s end are immediately valid in EBICS.

The subscriber is responsible for download of the respective current bank keys via HPB.
After processing of HPB, the state of the bank keys at the subscriber’s end is equal to “New”.
The bank keys may not (yet) be used for communication via EBICS while they have this
state. The financial institution MUST make the new keys accessible by means of a second,

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 75
 Status: Final Version 2.4.2

independent, communication channel. As with initial download of the bank keys, the
subscriber MUST carry out a comparison of the keys and/or its hash-values received via the
different communication channels immediately after initialisation. After successful verification
of the bank keys, their state is “activated” at the subscriber’s side. When they have the state
“activated”, the bank keys can be used for communication via EBICS.

In order to ensure that the subscriber has the current bank keys, the sequence of an EBICS
transaction (with the exception of INI, HIA, HPB, HSA) in the first EBICS request provides for
the transmission of the hash value of the financial institution’s public keys (XML structure
ebicsRequest/header/static/BankPubKeyDigests) with which the subscriber has
been provided. The bank system verifies whether the these keys are up-to-date and returns
the result of the verification to the subscriber. If one of these is no longer current, the
transaction is terminated with the technical return code
EBICS_BANK_PUBKEY_UPDATE_REQUIRED. The subscriber must then download the
bank keys with HPB.

In Version “H003” of the EBICS protocol the ES of the financial institutions is only planned
(see Chapter 3.5.2). In preparation for future versions of EBICS, the XML structure
BankPubKeyDigests contains the hash value of the public bank-technical key with the
maximum frequency being equal to 0. Further details on verifying the hash value can be
found in Chapter 5.5.1.2.

4.7 Change-over to longer key lengths
The key lengths must continually be increased to guarantee the security of the RSA process.
See the regular publications of the “Übersicht über geeignete Algorithmen” from the
Regulierungsbehörde für Telekommunikation und Post.

The subject of this chapter is the transition to keys of greater length in EBICS.

In Version “H003”, the length of the bank-technical keys is implicitly fixed at 1024 for
signature process A004 due to the support of formats existing before the specification of
EBICS. These are:

 The format of the A004 file. See Chapter 14.2.5 for details: Signature format A004.As

long as only the format of the A004 file is used, only bank-technical keys of length 1024
can be used.

 The format of the INI file. See Appendix 2 (Security standards), Chapter 2.2.2.6.This
format continues to be used in EBICS “H003” for INI, PUB and HCS, as long as the
process A004 is applied only bank-technical keys of length 1024 can be used.

If bank-technical keys of length > 1024 are used,,the structured form of the ES is required
(see also chapter 14.2).

In Version “H003”, EBICS sets a minimum length of 1024 bits (= 1 Kbit) and a maximum
length of 16 Kbit for identification and authentication keys and encryption keys. The minimum
length must be changed when keys of this length are no longer to be used for security

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 76
 Status: Final Version 2.4.2

reasons. The maximum length must be changed when keys that are longer than this
maximum length are allowed to be supported.

The order data formats of the new key management order types HIA, HPB, HCA, and HCS
permit key lengths of any size. This means that these order data formats will not require
adaptation after the key lengths have been increased.

New public identification and authentication keys or encryption keys of greater length will be
transmitted to the bank systems via HIA, HCS, or HCA in exactly the same way as new
identification and authentication keys of consistent length.

In the same way, the financial institution’s new public keys will be downloaded via HPB
irrespective of whether the length of the financial institution’s identification and authentication
key or encryption key has changed.

4.8 Migration of remote data transmission to EBICS via FTAM

4.8.1 General description
As an alternative to the initial state “New”, subscribers to the EBICS subscriber
administration can be added with the state “New_FTAM” if the following conditions are met:

 Due to their remote access data transmission for FTAM, the subscriber already has a
valid bank-technical key that has been activated by the financial institution

 The existing bank-technical key should be retained in the course of the migration from
FTAM to EBICS.

In addition to subscriber initialisation in accordance with Chapter 4.4.1 via INI and HIA,
subscriber initialisation can take place in the state “New_FTAM” with the help of order type
HSA. Analogously to HIA, a subscriber’s public identification and authentication key and
encryption key can be transmitted to a financial institution via HSA. In contrast to HIA, the
subscriber’s ES is also sent via the order data with HSA. The signature class of this ES is
irrelevant, but it must be supplied by the subscriber whose keys are being transmitted. HSA
does not require additional dispatch of an initialisation letter since the authenticity of the
transmitted keys is ensured by the ES of the subscriber in question. It is the responsibility of
the financial institution to document subscriber initialisation via HSA in such a way that the
subscriber’s key history can be traced.

After successful processing of HSA, the subscriber in question takes on the state “Ready”.
The subsequent necessary steps for download and verification of the bank keys are carried
out in accordance with Chapter 4.4.2.

Analogously to Diagram 13, the sequence diagram in Diagram 33 shows an example of the
flow of subscriber initialisation via HSA and subsequent download of the bank keys. The
diagram simultaneously shows the state of the public bank keys at the subscriber’s end and
the state of the subscriber, and the state of the public subscriber keys at the bank’s end.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 77
 Status: Final Version 2.4.2

Public authentication key credit institute [missing]
Public encryption key credit institute [missing]

Public EU-key credit institute [missing]

User [Ready]
Public authentication key User [Released]
Public encryption key User [Released]
Public EU-key User [Released]

Public authentication key credit institute [New]
Public encryption key credit institute [New]
Public EU-key credit institute [New]

User [Ready]
Public authentication key User [Released]
Public encryption key User [Released]
Public EU-key User [Released]

HSA-request (public authentication key User,
public encryption key User)

HSA-response

HPB-request

HPB-response (public authentication key credit institute,
public EU-key credit institute,
public encryption key credit institute)

Public authentication key credit institute [Released]
Public encryption key credit institute [Released]
Public EU-key credit institute [Released]

User [Ready]
Public authentication key User [Released]
Public encryption key User [Released]
Public EU-key User [Released]

User [New_FTAM]
Public authentication key User [missing]
Public encryption key User [missing]
Public EU-key User [released]

Public authentication key credit institute [missing]
Public encryption key credit institute [missing]

Public EU-key credit institute [missing]

User system Banksystem

Comparison of the credit
institute‘s public keys

Diagram 33: Process example: Subscriber initialisation with HSA, followed by download and
verification of the bank keys

Diagram 34 shows the expansion of the subscriber’s state diagram to include the initial state
“New_FTAM”. It can be seen from this that subscriber initialisation of subscribers in the state
“New_FTAM” can be carried out via both INI and HIA and also via HSA.

It is optional for the financial institutions to support HSA.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 78
 Status: Final Version 2.4.2

New

Partly initialised (INI)

Initialised

Ready

Partly initialised (HIA)

Locked

INIINI HIA HIA

SPR, call credit institute

PUB & HCA or HCS

User release through
the credit institute

HIA INI

New_FTAM

HSA

INI

HIA

Diagram 34: Expanded state transition diagram for subscribers

4.8.2 HSA [optional]
Processing of HSA is admissible when the state of the subscriber in question is
“New_FTAM”. Transmission of HSA orders takes place via a single EBICS request /
response pair. The following applies for the EBICS request of HSA:

 The HSA request does not contain an identification and authentication signature, since
the subscriber’s public identification and authentication key is being transmitted for the
first time in this request.

 The HSA request contains the order data, i.e. the subscriber’s public encryption key and
public identification and authentication key in unencrypted form since the subscriber does
not yet have the financial institution’s public encryption key.

The flow diagram Diagram 35 in represents the processing at the bank’s end that takes place
on receipt of an HSA request. In an analogous manner to HIA, error situations that result
from an invalid combination of customer/subscriber ID or an inadmissible subscriber state
are also here not passed directly to the sender of the HSA request. Instead, the sender
receives the technical error code EBICS_INVALID_USER_OR_USER_STATE. HSA does
not provide any errors of the type “Unknown subscriber” or “Inadmissible subscriber state” so
that potential attackers are not given precise information about the validity of subscriber IDs
or the state of subscribers. Also analogously to HIA, internal documentation must take place
on the part of the financial institution to record the precise reason for the error.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 79
 Status: Final Version 2.4.2

The flow diagram provides verification of the subscriber state so that HSA requests are
rejected on the EBICS level if the subscriber state is inadmissible for HSA. The sole
admissible state for HSA is “New_FTAM”. Here, the state of the subscriber is verified from
the header data of the request. The order data of the HSA request (see Chapter 4.8.3.1)
merely contains the subscriber whose identification and authentication key and encryption
key are to be transmitted. For this reason, the subscriber from the header data should
correspond with the subscriber from the order data. The EBICS protocol does not provide a
verification for this correspondence. However, before actual processing of the order the
subscriber’s state is verified (again) which is a part of the order data of HSA.

Verifying and processing of an HSA order can return the following error codes:

 EBICS_KEYMGMT_UNSUPPORTED_VERSION_ENCRYPTION
This business related error occurs when the order data contains an inadmissible version
of the encryption process

 EBICS_KEYMGMT_UNSUPPORTED_VERSION_AUTHENTICATION
This business related error occurs when the order data contains an inadmissible version
of the identification and authentication signature process

 EBICS_KEYMGMT_KEYLENGTH_ERROR_ENCRYPTION
This business related error occurs when the order data contains an encryption key of
inadmissible length

 EBICS_KEYMGMT_KEYLENGTH_ERROR_AUTHENTICATION
This business related error occurs when the order data contains an identification and
authentication key of inadmissible length

 EBICS_INVALID_ORDER_DATA_FORMAT
This business related error occurs when the order data does not correspond with the
designated format (see Chapter 4.8.3.1).

 EBICS_INVALID_USER_OR_USER_STATE
This technical error occurs when the order data contains a subscriber that is either invalid
or whose state is inadmissible for HSA. Only the subscriber state “New_FTAM” is
admissible: New, Suspended, Partially initialised (INI).

 EBICS_KEYMGMT_NO_X509_SUPPORT
This business related error occurs when a public key of type ds:X509Data has been
transmitted but the financial institution only supports type ebics:PubKeyValueType.

 EBICS_INVALID_SIGNATURE_FILE_FORMAT
This business related error occurs when the submitted ES file does not conform to the
defined format.

 EBICS_SIGNATURE_VERIFICATION_FAILED
This business related error occurs when the ES of the subscriber in question could not be
successfully verified.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 80
 Status: Final Version 2.4.2

HSA order check and execution
(includes EU verification)

HSA response creation

Sending HSA response

Receiving HSA request

[RC ≠ 0]

[RC = 0]

RCT = 0
RCF = RC

RCT = RC
RCF = 0

else

[RC is a
non-technical error]

RCT = 0
RCF = 0

[RC ≠ 0]

[RC = 0]

State check for user
Valid states: New_FTAM

RCT = EBICS_INVALID_USER_OR_USER_STATE
RCF = 0

Validity check
user ID/ partner ID

[RC ≠ 0]

[RC = 0]

RCT = EBICS_INVALID_USER_OR_USER_STATE
RCF = 0

Diagram 35: Processing of an HSA request at the bank’s end

The EBICS response for HSA does not contain an identification and authentication signature
of the financial institution since the subscriber does not yet have the financial institution’s
public identification and authentication key with which they can carry out a verification.

HSA orders must be submitted and signed via ES by the subscriber whose keys are to be
transmitted. This is a component of the HSA order data. In each case, HSA requires
precisely one ES; the signature class of this ES is irrelevant.

Diagram 33 shows the state of the subscriber keys and the subscriber before and after
processing of HSA.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 81
 Status: Final Version 2.4.2

4.8.3 Description of the EBICS messages for HSA

4.8.3.1 Format of the order data
The HSA order data has the same structure as the HIA order data and is defined via XML
schema as follows:

Diagram 36: Definition of the XML schema element HSARequestOrderData for HSA order
data

The order data for HSA is an instance document that conforms with ebics_orders.xsd and
comprises the top-level element HSARequestOrderData. It is compressed and base64-
coded, and embedded in the corresponding EBICS request.

4.8.3.2 Description and example messages
This chapter describes the EBICS messages for order type HSA. HSA requests are instance
documents that conform with ebics_keymgmt_request.xsd comprising the top-level element
ebicsUnsignedRequest. HSA responses are instance documents that conform with
ebics_keymgmt_response.xsd comprising the top-level element
ebicsKeyManagementResponse.

 Transmission of the following data in the HSA request (analogous to INI, see example in
Diagram 21):

- Host ID of the EBICS bank computer system
(ebicsUnsignedRequest/header/static/HostId)

- Subscribers (ebicsUnsignedRequest/header/static/PartnerID,
ebicsUnsignedRequest/header/static/UserID) whose public
identification and authentication key and public encryption key are to be
transmitted to the financial institution

- (Optional) technical subscribers
(ebicsUnsignedRequest/header/static/PartnerID,

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 82
 Status: Final Version 2.4.2

ebicsUnsignedRequest/header/static/SystemID)
SystemID can be contained in the message if the customer system is a multi-user
system. Since HSA requests do not contain an identification and authentication
signature, declaration of SystemID is optional.

- (Optional) information on the customer product
(ebicsUnsignedRequest/header/static/Product)

- Order type
(ebicsUnsignedRequest/header/static/OrderDetails/OrderType)
set to “HSA”

- Order number
(ebicsUnsignedRequest/header/static/OrderDetails/OrderID)

- Order attributes
(ebicsUnsignedRequest/header/static/OrderDetails/OrderAttribu
te) set to “OZNNN”

- Security medium for the subscriber’s bank-technical
key(ebicsUnsignedRequest/header/static/SecurityMedium)

- Order data ES
(ebicsUnsignedRequest/body/DataTransfer/SignatureData).

- Order data (ebicsUnsignedRequest/body/DataTransfer/OrderData).

<?xml version="1.0" encoding="UTF-8"?>
<ebicsUnsignedRequest
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003
 http://www.ebics.org/H003/ebics_keymgmt_request.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <HostID>EBIXHOST</HostID> <PartnerID>CUSTM001</PartnerID>
 <UserID>USR100</UserID>
 <OrderDetails>
 <OrderType>HSA</OrderType>
 <OrderID>A201</OrderID>
 <OrderAttribute>OZNNN</OrderAttribute>
 </OrderDetails>
 <SecurityMedium>0000</SecurityMedium>
 </static>
 <mutable/>
 </header>
 <body>
 <DataTransfer>
 <!-- XML instance document using root element UserSignatureData in accordance with
ebics_orders.xsd, compressed and base64 encoded -->
 <SignatureData>
 …
 </SignatureData>
 <!-- XML instance document using root element HSARequestOrderData in accordance with
ebics_orders.xsd, compressed and base64 encoded -->
 <OrderData>
 …
 </OrderData>
 </DataTransfer>
 </body>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 83
 Status: Final Version 2.4.2

</ebicsUnsignedRequest>

Diagram 37: EBICS request for order type HSA

 Transmission of the following data in the HSA response (analogous to HIA, see example
in Diagram 22):

- Bank-technical return code (ebicsKeyManagementResponse/body/ReturnCode)

- Technical return code
(ebicsKeyManagementResponse/header/mutable/ReturnCode)

- Technical report text
(ebicsKeyManagementResponse/header/mutable/ReportText)

- (Optional) time stamp for the last updating of the bank parameters
(ebicsKeyManagementResponse/body/TimestampBankParameter).

<?xml version="1.0" encoding="UTF-8"?>
<ebicsKeyManagementResponse
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003
 http://www.ebics.org/H003/ebics_keymgmt_response.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static/>
 <mutable>
 <ReturnCode>000000</ReturnCode>
 <ReportText>[EBICS_OK] OK</ReportText>
 </mutable>
 </header>
 <body>
 <ReturnCode authenticate="true">000000</ReturnCode>
 </body>
</ebicsKeyManagementResponse>

Diagram 38: EBICS response for order type HAS

4.9 Summary
The following table summarises the most important features of the system-related key
management order types:

Order type Order data format Order

attribute
Identification and
authentication signature
subscriber / financial
institution

Order data ES

INI INI file (in accordance with
Chapter 14) DZNNN no/no no

HIA ebics: HIARequestOrder»
Data DZNNN no/no no

HSA ebics: HSARequestOrder»
Data OZNNN no/no yes

HPB ebics: HPBRequestOrder»
Data DZHNN yes/no no

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 84
 Status: Final Version 2.4.2

PUB see INI OZHNN yes/yes yes

HCA ebics: HCARequestOrder»
Data OZHNN yes/yes yes

HCS ebics: HCSRequestOrder»
Data OZHNN yes/yes yes

SPR -- UZHNN yes/yes yes

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 85
 Status: Final Version 2.4.2

5 EBICS transactions
The descriptions and stipulations in this chapter apply to all order types with the exception of
the following system-related key management order types: INI, HIA, HSA, HPB, PUB, SPR,
HCA and HCS.

5.1 General provisions

5.1.1 EBICS transactions
EBICS transactions serve for the transmission of orders to the bank-technical target system.
Corresponding to the subdivision of orders into transmit and download orders, EBICS
differentiates between upload and download transactions: Upload transactions transmit
bank-technical order data and/or bank-technical signatures to the bank-technical target
system; conversely, with a download transaction bank-technical order data and/or bank-
technical signatures are downloaded from the bank-technical target system.

5.1.2 Transaction phases and transaction steps
Each EBICS transaction passes through different transaction phases. The phases of an
upload transaction are initialisation and data transfer, the phases of a download transaction
are initialisation, data transfer and finally acknowledgement. A transaction phase can
comprise one or more connected transaction steps, wherein a transaction step is deemed to
denote a pair comprising an EBICS request and an associated EBICS response. In this way,
initialisation comprises the first initialisation step, but on the other hand data transfer can
extend over several transaction steps, in each of which one order data segment is
transmitted.

EBICS transactions can comprise one single transaction step, for example when they just
transmit the bank-technical electronic signature for an order.

5.1.3 Processing of orders

5.1.3.1 Chronological dependencies between transmission and processing of upload
orders

EBICS supports the chronological decoupling of the submission of bank-technical upload
orders via EBICS from their actual processing on the back-end systems of the financial
institution. The ES’s and order data segments that are submitted within an EBICS transaction
are firstly pre-processed. This pre-processing is not a component of EBICS, it is dependent
on the implementation of the bank system, for example the intermediate storage of the order
data segments is a part thereof. After transmission of the last order data segment the entire
order data, order parameters and ES’s are firstly passed on to a component of the bank
system that is responsible for the management of pending orders. Realisation is
dependent on the implementation of the bank system, it is not a component of EBICS.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 86
 Status: Final Version 2.4.2

In contrast to the bank-technical upload orders, it is required that processing of the upload
orders of system-related order types MUST be completed before transmission of the last
EBICS response of the upload transaction. In addition to the key management order types,
this requirement also applies to download orders of VEU order types so that the distributed
ES process can be handled as efficiently as possible and the involved subscribers can be
given the must up-to-date state of the distributed ES’s of an order.

5.1.3.2 Chronological dependencies between transmission and processing of
download orders

The download data is a component of the financial institution’s EBICS response. The bank
system makes a further order data segment available with each EBICS transaction step. In
order to accelerate the download process, the download data can be generated by the bank
system in advance (such as e.g. in the case of account statements) or can not be generated
until required.

5.1.4 Transaction administration
Control of the development of an EBICS transaction is normally incumbent on the customer
system, the individual transaction steps of an EBICS transaction are each initiated by the
customer system. In special cases, the bank system can also control the development of a
transaction, e.g. in that it informs the customer system of a possible recovery point in the
event of a recovery.

The EBICS transactions must also be administrated in the bank system to allow the
following:

 Assignment of the individual transaction steps to a specific EBICS transaction.

 recording of the process of the EBICS transaction for administration of the transaction
states with the objective of ensuring the progress of the EBICS transaction.

 Recovery of an EBICS transaction.

This produces the following responsibilities for the bank system’s EBICS transaction
administration:

 Generation of EBICS transactions during transaction initialisation. See Chapter 5.2 for
details.

 Aborting EBICS transactions if continuation is not expedient or not possible due to the
occurrence of error situations

 Termination of EBICS transactions if it has been possible to carry out all transaction
steps successfully

 Verifying the process of EBICS transactions to ensure their sequence in accordance with
Chapter 5.5.1.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 87
 Status: Final Version 2.4.2

 Supporting the process for recovering EBICS transactions in accordance with Chapter
5.5.2 and 5.6.2 if the bank system supports recovery.

5.2 Assignment of EBICS request to EBICS transaction
The first phase of every EBICS transaction is the initialisation phase. It is triggered by the
first EBICS request of the transaction, and comprises:

 Verifications, wherein the successful execution of these verifications is a necessary
prerequisite for acceptance of the order by the financial institution

 Further processing steps that are necessary for acceptance of EBICS transactions that
comprise more than one transaction step into the transaction administration system

Examples of such verifications are checks on the state and the order type authorisation of
the subscriber that has submitted the order. The precise scope of these verifications/process
steps is described in Chapter 5.5.1.2.1 for upload transactions and in Chapter 5.6.1.2.1 for
download transactions .

If all necessary verifications have been successfully carried out and if the transaction
comprises several transaction steps, the bank system’s transaction administration generates
an EBICS transaction with a transaction ID that is unambiguous within the bank system
(details on generation of the transaction ID can be found in the Appendix (Chapter 11.6). The
subscriber is notified of this via the financial institution’s reply message. The bank system’s
transaction administration permanently assigns this transaction the following data, which is a
component of the header data of the EBICS request:

 Customer ID, subscriber ID/technical subscriber ID

 Order type

 Order number

 Order attributes

 Order parameters.

This data is permanently assigned to the transaction and cannot be changed in the course of
the transaction.

Outside of the initialisation process, EBICS requests contain these transaction IDs for
assignment to suitable EBICS transactions. As a whole, they contain the following elements
that identify the transaction step:

 Transaction ID that is unambiguous throughout the bank system

 Transaction phase (initialisation, data transfer, acknowledgement) within the transaction

 Serial number of the data segment of bank-technical data, if in the data transfer
transaction phase.

A detailed description of the structure of EBICS requests for upload and download
transactions can be found in Chapters 5.5.1.1 and 5.6.1.1.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 88
 Status: Final Version 2.4.2

5.3 Preliminary verification of orders [optional]
The bank system CAN optionally support preliminary verification functionality to avoid the
possibility of subscribers transmitting large quantities of data to the bank system, wherein it is
only discovered by the bank after the transmission has taken place that the signatory of the
upload order did not have the necessary authorisation. The information as to whether a bank
system supports preliminary verification is contained in its retrievable bank parameters (see
Chapter 12.2). If preliminary verification of upload orders is supported, determination of the
scope of the preliminary verification is the responsibility of the individual financial institution.
Support of one or more of the following verifications is possible:

 Account authorisation verification
The account authorisation verification ensures that the following condition is complied
with for each signatory:

- The signatory is authorised to provide an ES of at least type “B” for orders of the
specified order type for each of the order party accounts in a given order.

 Limit verification
The limit verification ensures that the following condition is complied with for each
signatory :

- The signatory is authorised to provide an ES of at least type “B” for orders of the
specified order type and to the respective amount for each of the order party
accounts in a given order.

 ES verification
The ES verification verifies the ES of the signatory of the order and checks in each case
as to whether the ES’s originate from different subscribers.

For a successful preliminary verification the subscriber requires one of the signature classes
"E", "A", or "B". If orders are submitted only (i.e. signature class "T") the preliminary
verification is not run through. The return code "EBICS SIGNATURE VERIFICATION
FAILED" is returned if signature is not valid.

If the order at hand has already been signed the return code "EBICS DUPLICATE
SIGNATURE" is returned.

Preliminary verification of an upload order is a part of the first transaction step within the
framework of the corresponding upload transaction. The results of the preliminary verification
are given in the bank-technical return code in the corresponding EBICS response of the first
transaction step. Preliminary verification takes place before transmission of the order’s order
data, based on information from the customer system about the order data that is still
outstanding. It does not replace the corresponding verifications that are based on the actual
order data after its transmission to the bank system.

The customer system CAN further limit the scope of the preliminary verifications. The account
authorisation, limit or bank-technical ES preliminary verifications are only carried out by the
bank if the data necessary for their execution is made available by the customer system. The
preliminary verification data is transmitted in the first EBICS request of an upload transaction

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 89
 Status: Final Version 2.4.2

via the (optional) element ebicsRequest/body/PreValidation (see
ebics_request.xsd), the type definition of which is shown in Diagram 39. This type is called
PreValidationRequestType (see ebics_types.xsd) and comprises a list of the following
optional elements:

 DataDigest

 This element contains the hash value of the order data that has been signed by the
order signatories via transport signature or bank-technical ES. During preliminary
verification of an order, the ES’s are verified solely on the basis of this hash value, the
correctness of which cannot be verified at the time of verification.
For the signature process used by the order signatories (and, relating to EBICS,
supported by the bank) a hash value can be set which is to be calculated by the hash
function of the respective signature process. The appropriate signature process is
identified by means of the attribute SignatureVersion. DataDigest may occur
multiple times if the signatories use different signature versions (this is the case if not
every subscriber of a customer signs using the same signature process). This is the
reason why the correct setting of the attribute SignatureVersion is so important
for each DataDigest (default A004).

 AccountAuthorisation
This element contains an order party account for the given order. For this account,
the account number (AccountAuthorisation/AccountNumber) is given in
German and/or international format and the bank code
(AccountAuthorisation/BankCode) is given in German and/or international
format. As an option, the account holder
(AccountAuthorisation/AccountHolder) can also be provided. This account
information is required by the account authorisation and limit verifications. In addition,
the limit verification requires specification of the total for the individual orders relating
to the given order party account. This amount is contained in the (optional) element
AccountAuthorisation/Amount. The currency of the amount is the value of
optional attribute AccountAuthorisation/Amount@Currency, if this is available.
Otherwise the currency is the value of attribute
AccountAuthorisation@Currency, which contains the currency of the account.

The individual preliminary verifications require the subscriber ID/ customer ID of each
individual signatory. These are a component of the XML type OrderSignature that is used to
represent individual ES’s. See Chapter 3.5 for further details on embedding ES’s into EBICS
messages.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 90
 Status: Final Version 2.4.2

Diagram 39: XML schema type definition for the transmission of data for preliminary
verification of an order

5.4 Recovery of transactions [optional]
This chapter describes the basic principles of the recovery procedure that apply to both
upload and download transactions.

The EBICS recovery mechanism means that a transaction’s order data that has already been
received by the customer or bank system does not have to be re-transmitted if one of the
following error situations occurs:

 Transport error

 Processing error in the EBICS message that contains the order data:
In the case of upload transactions these are EBICS request processing errors that can

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 91
 Status: Final Version 2.4.2

occur at the bank’s end, in the case of download transactions they are EBICS response
processing errors that occur at the customer’s / subscriber’s end. For example, errors can
occur during (intermediate) storage of order data.

Recovery is an important aspect of the protocol, since the size of the order data can certainly
reach a magnitude of several hundred megabytes.

The mechanism requires knowledge of the transaction ID of the EBICS transaction in
question, and is based on the definition of transaction recovery points:

 In the case of upload transactions, the recovery point is the last transaction step in the
transaction whose EBICS request has been successfully received by the bank system
and whose EBICS response has been successfully transmitted. The recovery point is
determined by the state of the transaction in the bank system.

 In the case of download transactions, there may be several recovery points. These are all
of the previous transaction steps in the transaction in question whose EBICS request has
been successfully received by the bank system and whose EBICS response has been
successfully transmitted.

After transport or processing errors have occurred, a recovery point can be used to continue
transactions from the transaction step that follows this recovery point in the transaction step
sequence.

All EBICS requests relating to an open transaction that do not match the state of this
transaction are evaluated by the bank system’s EBICS transaction administration as
recovery attempts.

In order to guarantee progress of the EBICS transactions, the number of possible recovery
attempts per transaction MUST be limited by a maximum value. The bank system’s
transaction administration is responsible for administration of the corresponding counter for
each transaction. Transactions whose counter exceeds the permitted limit will be terminated
by the bank system’s transaction administration. In addition, the bank system CAN limit the
number of open transactions with a positive recovery counter for each subscriber by setting a
maximum value. The counter for recovery attempts that have already been initiated for each
transaction and/or the counter for the pending transactions in recovery mode for each
subscriber and also the permitted maximum numbers are not a part of the EBICS messages.
Instead, they are a part of the processing of the EBICS transaction administration at the
bank’s end.

Analogously, the customer system’s transaction control limits the number of attempts made
to successfully carry out a particular transaction step in an EBICS transaction. In this case,
counters and permitted maximum numbers are not part of the EBICS messages but are
merely part of the processing of transaction control at the customer’s end.

Details on recovery of upload and download transactions are given in Chapters 5.5.2 and
5.6.2.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 92
 Status: Final Version 2.4.2

5.5 Upload transactions

5.5.1 Sequence of upload transactions
The sequence of an upload transaction is shown in Diagram 40 by means of a flow diagram.
Transmission of the order data segments takes place within a loop that is broken off when
the last order data segment has been transmitted (note partial expression “[last data
segment has been transmitted]” from the termination conditions). The sequence clarifies that
order data does not necessarily also have to be transmitted within an upload transaction note
partial expression “[OrderAttribute == “UZHNN”]” from the termination conditions). This is the
case when only bank-technical ES’s relating to an existing order are transmitted within the
framework of the upload transaction.

transaction initialisation

transfer of data segment for transaction xxx

ok, unique transaction ID = xxx

ok

[(OrderAttribute ==UZHNN) or (last data segment has been transmitted)]loop

Bank systemCustomer system

Diagram 40: Error-free sequence of an upload transaction

5.5.1.1 Description of the EBICS messages
For clarification purposes, the following description of the transaction steps in an upload
transaction use example messages for the processing of an order of type IZV. It refers to
elements of these example messages, using XPath notation.

The following chapters describe the messages in the individual transaction phases. The data
that is a component of these messages is listed here. Data that is fundamentally optional is
marked “(optional)”. Data that may only be missing under certain conditions is instead
marked “(conditional)”. Optional XML elements that are missing in the description of an
EBICS message relating to a specific transaction phase may not be present in this EBICS
message. Optional XML elements that are present in the description of an EBICS message
relating to a specific transaction phase MUST always be placed correspondingly in this EBICS
message.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 93
 Status: Final Version 2.4.2

EBICS requests for upload transactions are (XML) instance documents that conform to
ebics_request.xsd and comprise the top-level element ebicsRequest which is declared in
ebics_request.xsd. EBICS responses for upload transactions are instance documents that
conform to ebics_response.xsd and comprise the top-level element ebicsResponse which
is again declared in ebics_response.xsd.

5.5.1.1.1 EBICS messages in transaction initialisation

 Transmission of the following data in the EBICS request (see Diagram 41):
- Host ID of the EBICS bank computer system

(ebicsRequest/header/static/HostID)

- Transaction phase (ebicsRequest/header/mutable/TransactionPhase) with
the setting “Initialisation”
- Combination of Nonce and Timestamp, necessary to avoid replaying old EBICS
messages (ebicsRequest/header/static/Nonce,
ebicsRequest/header/static/Timestamp)

- Number of data segments to be transmitted
(ebicsRequest/header/static/NumSegments)

- Subscriber (ebicsRequest/header/static/PartnerID,
ebicsRequest/header/static/UserID) that is submitting a new order or that
is providing bank-technical ES’s for an existing order.

- (Conditional) technical subscribers (ebicsRequest/header/static/PartnerID,
ebicsRequest/header/static/SystemID)
SystemID must be present if the customer system is a multi-user system. The
technical subscriber is responsible for the generation of the EBICS request
(including the identification and authentication signatures) that belong to orders
that are submitted or bank-technically signed by the subscriber.

- (Optional) information on the customer product
(ebicsRequest/header/static/Product)

- Order type (ebicsRequest/header/static/OrderDetails/OrderType)

- Order number (ebicsRequest/header/static/OrderDetails/OrderID)

- Order attributes
(ebicsRequest/header/static/OrderDetails/OrderAttribute).
If the value of OrderAttribute is equal to “UZHNN”, only the bank-technical ES’s of
an order will be transmitted within the current transaction, and the value of
ebicsRequest/header/static/NumSegments has to be „0“. The value
“OZHNN” means that order data (segments) will be transmitted in addition to the
ES’s: The file is passed to the VEU if these ES’s are insufficient. If the value is
“DZHNN”, the order is bank-technically activated via a manually-signed
accompanying note: The order data is signed with a transport signature, and after
it has been successfully verified the order is sent directly for bank-specific follow-
up processing (and not passed to the VEU).

- Order parameters
(ebicsRequest/header/static/OrderDetails/OrderParams);

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 94
 Status: Final Version 2.4.2

the characteristics of the order parameters are dependent on the order type (see
also Chapter 3.11)

- Hash values of the financial institution’s public keys that are available to the subscriber
(ebicsRequest/header/static/BankPubKeyDigests/Authentication,
ebicsRequest/header/static/BankPubKeyDigests/Encryption,
ebicsRequest/header/static/BankPubKeyDigests/Signature).
Both the utilised hash algorithm and the version of the corresponding identification
and authentication, encryption and signature process will be specified for each of
these hash values.
The SHA-256 hash values of the financial institution's public keys for X002 and
E002 are composed by concatenating the exponent with a blank character and the
modulus in hexadecimal representation (using lower case letters) without leading
zero (as to the hexadecimal representation). The resulting string has to be
converted into a byte array based on US ASCII code.

In Version “H003” of the EBICS protocol the ES of the financial institutions is only
planned (see Chapter 3.5.2). The element BankPubKeyDigests/Signature is
already contained in this description in preparation for future versions of EBICS,
but in Version “H003” its maximum frequency (maxOccurs) is set to 0.

- Security medium for the subscriber’s bank-technical
key(ebicsRequest/header/static/SecurityMedium)

- Identification and authentication signature of the technical subscriber, if such is
available, otherwise the identification and authentication signature of the
subscriber themselves (ebicsRequest/AuthSignature)
The identification and authentication signature includes all XML elements of the
EBICS request whose attribute value for @authenticate is equal to “true”. The
definition of the XML schema “ebics_request.xsd“ guarantees that the value of the
attribute @authenticate is equal to “true” for precisely those elements that also
need to be signed.

- (Optional) data for preliminary verification of the order

(ebicsRequest/body/PreValidation)

- Information for encryption of the ES’s and order data
(ebicsRequest/body/DataTransfer/DataEncryptionInfo) which
especially also contains the asymmetrically-encrypted transaction key
(ebicsRequest/body/DataTransfer/DataEncryptionInfo/Transactio
nKey)

- ES’s of the order’s order data
(ebicsRequest/body/DataTransfer/SignatureData) SignatureData
contains an instance document that conforms to “ebics_orders.xsd” and contains
UserSignatureData as a top-level element. This instance document has been
compressed with ZIP, encrypted for the financial institution and finally base64-
coded before being embedded into the EBICS request (see Appendix (Chapter
11.2.2)). Diagram 42 contains an example of such an instance document that
contains a single ES. The setting for the attribute PartnerID in the document

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 95
 Status: Final Version 2.4.2

UserSignatureData must be identical to the submitter's customer ID in the
element ebicsRequest/header/static/PartnerID.

<?xml version="1.0" encoding="UTF-8"?>
<ebicsRequest
xmlns="http://www.ebics.org/H003"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_request.xsd"
Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <HostID>EBIXHOST</HostID>
 <Nonce>BDA2312973890654FAC9879A89794E65</Nonce>
 <Timestamp>2005-01-30T15:30:45.123Z</Timestamp>
 <PartnerID>CUSTM001</PartnerID>
 <UserID>USR100</UserID>
 <Product Language="en" InstituteID="Institute ID">Product Identifier</Product>
 <OrderDetails>
 <OrderType>IZV</OrderType>
 <OrderID>OR01</OrderID>
 <OrderAttribute>OZHNN</OrderAttribute>
 <StandardOrderParams/>
 </OrderDetails>
 <BankPubKeyDigests>
 <Authentication Version="X002"
Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">1H/rQr2Axe9hYTV2n/tCp+3UIQQ=</Authenticati
on>
 <Encryption Version="E002"
Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">2lwiueWOIER823jSoiOkjl+woeI=</Encryption>
 </BankPubKeyDigests>
 <SecurityMedium>0000</SecurityMedium>
 <NumSegments>2</NumSegments>
 </static>
 <mutable>
 <TransactionPhase>Initialisation</TransactionPhase>
 </mutable>
 </header>
 <AuthSignature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256">
 </ds:SignatureMethod>
 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <ds:DigestValue>…here hash value authentication..</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>…here signature value authentication..</ds:SignatureValue>
 </AuthSignature>
 <body>
 <PreValidation authenticate="true">
 <DataDigest SignatureVersion="A004">bTTeUGiVqOUjVfJviMo97LHEDmQ=</DataDigest>
 </PreValidation>
 <DataTransfer>
 <DataEncryptionInfo authenticate="true">
 <EncryptionPubKeyDigest Version="E002"
Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">..here hash value of the public bank key
for encryption..</EncryptionPubKeyDigest>
 <TransactionKey>EIGI4En6KEB6ArEzw+iq4N1wm6EptcyxXxStA…</TransactionKey>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 96
 Status: Final Version 2.4.2

 <HostID>EBIXHOST</HostID>
 </DataEncryptionInfo>
 <SignatureData authenticate="true">n6KEB6ArEzw+iq4N1wm6EptcyxXxStAO…</SignatureData>
 </DataTransfer>
 </body>
</ebicsRequest>

Diagram 41: EBICS request for transaction initialisation for order type IZV

<?xml version="1.0" encoding="UTF-8"?>
<UserSignatureData
xmlns="http://www.ebics.org/S001"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ebics.org/S001 http://www.ebics.org/S001/ebics_signature.xsd">
<UserSignatureData>
 <OrderSignatureData>

<SignatureVersion>A005</SignatureVersion>
<SignatureValue>EUXkQa……</SignatureValue>
<PartnerID>PARTNER1</PartnerID>
<UserID>User1</UserID>

 </OrderSignatureData>
</UserSignatureData>

Diagram 42: XML document that contains the ES’s of the signatory of the IZV order

 Transmission of the following data in the EBICS response (see also example in
Diagram 43)
- Bank-technical return code (ebicsResponse/body/ReturnCode)

- Technical return code (ebicsResponse/header/mutable/ReturnCode)

- Technical report text (ebicsResponse/header/mutable/ReportText)

- (Conditional) Transaction ID that is unambiguous throughout the bank system
(ebicsResponse/header/static/TransactionID), if the following
conditions are met:
• No errors of a technical or bank-technical nature have occurred during

transaction initialisation
• Within the current transaction, order data segments are transmitted in further

subsequent transaction steps, i.e. the order attributes are “OZHNN” or
DZHNN”.

- Transaction phase (ebicsResponse/header/mutable/TransactionPhase) with
the setting “Initialisation”

- Identification and authentication signature of the financial institution
(ebicsResponse/AuthSignature)
The identification and authentication signature includes all XML elements of the
EBICS response whose attribute value for @authenticate is equal to “true”. The
definition of the XML schema “ebics_response.xsd“ guarantees that the value of
the attribute @authenticate is equal to “true” for precisely those elements that
must be signed

- (Optional) time stamp for the last updating of the bank parameters
(ebicsResponse/body/TimestampBankParameter).

<?xml version="1.0" encoding="UTF-8"?>
<ebicsResponse
xmlns="http://www.ebics.org/H003"

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 97
 Status: Final Version 2.4.2

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_response.xsd"
Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <TransactionID>ABCDEF41394644363445313243ABCDEF</TransactionID>
 </static>
 <mutable>
 <TransactionPhase>Initialisation</TransactionPhase>
 <ReturnCode>000000</ReturnCode>
 <ReportText>[EBICS_OK] OK</ReportText>
 </mutable>
 </header>
 <AuthSignature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"/>
 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <ds:DigestValue>…here hash value authentication..</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>…here signature value authentication..</ds:SignatureValue>
 </AuthSignature>
 <body>
 <ReturnCode authenticate="true">000000</ReturnCode>
 </body>
</ebicsResponse>
Diagram 43: EBICS response for transaction initialisation for order type IZV

5.5.1.1.2 EBICS messages in the phase data transfer of a order data segment

 Transmission of the following data in the EBICS request (see example in Diagram 44):
- Host ID of the EBICS bank computer system

(ebicsRequest/header/static/HostID)
Data for identification of the current transaction step:
• Transaction ID (ebicsRequest/header/static/TransactionID)
• Transaction phase

(ebicsRequest/header/mutable/TransactionPhase) with the setting
“Transfer”

• Serial number of the order data segment
(ebicsRequest/header/mutable/SegmentNumber)
The attribute
ebicsRequest/header/mutable/SegmentNumber@lastSegment
specifies whether this is the last data segment.

- Identification and authentication signature of the technical subscriber, if such has been
defined for the current transaction, otherwise the identification and authentication
signature of the submitting subscriber themselves
(ebicsRequest/AuthSignature)
The identification and authentication signature includes all XML elements of the
EBICS request whose attribute value for @authenticate is equal to “true”. The

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 98
 Status: Final Version 2.4.2

definition of the XML schema “ebics_request.xsd“ guarantees that the value of the
attribute @authenticate is equal to “true” for precisely those elements that also
need to be signed

- The actual order data segment
(ebicsRequest/body/DataTransfer/OrderData)
(see Chapter 3.3 and Chapter 7 for details on the segmentation of order data).

<?xml version="1.0" encoding="UTF-8"?>
<ebicsRequest
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_request.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <HostID>EBIXHOST</HostID>
 <TransactionID>ABCDEF41394644363445313243ABCDEF</TransactionID>
 </static>
 <mutable>
 <TransactionPhase>Transfer</TransactionPhase>
 <SegmentNumber lastSegment="true">4</SegmentNumber>
 </mutable>
 </header>
 <AuthSignature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256">
 </ds:SignatureMethod>
 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <ds:DigestValue>…here hash value authentication..</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>…here signature value authentication..</ds:SignatureValue>
 </AuthSignature>
 <body>
 <DataTransfer>
 <OrderData>RUJJQ1MtUmVxdWVzdCBm/HIgZGllINxiZXJ0…</OrderData>
 </DataTransfer>
 </body>
</ebicsRequest>

Diagram 44: EBICS request for transmission of the last order data segment for order type
IZV

 Transmission of the following data in the EBICS response (see also example in Diagram
45)
Bank-technical return code (ebicsResponse/body/ReturnCode)

Technical return code (ebicsResponse/header/mutable/ReturnCode)

Technical report text (ebicsResponse/header/mutable/ReportText)

Data for identification of a transaction step:
If the technical return code has the value EBICS_TX_RECOVERY_SYNC, this transaction

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 99
 Status: Final Version 2.4.2

step identifies the recovery point of the upload transaction. However, if neither technical nor
specialist errors have occurred in this example, this transaction step reflects the current
transaction step.

- Transaction ID (ebicsResponse/header/static/TransactionID)

- Transaction phase (ebicsResponse/header/mutable/TransactionPhase)

- (Conditional) Serial number of the order data segment
(ebicsResponse/header/mutable/SegmentNumber), if the value of
TransactionPhase is not equal to “Initialisation”.
The attribute
ebicsResponse/header/mutable/SegmentNumber@lastSegment specifies
whether this is the last data segment.

- Identification and authentication signature of the financial institution
(ebicsResponse/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS
response whose attribute value for @authenticate is equal to “true”. The definition of

the XML schema “ebics_response.xsd“ guarantees that the value of the attribute
@authenticate is equal to “true” for precisely those elements that also need to be

signed.

<?xml version="1.0" encoding="UTF-8"?>
<ebicsResponse
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_response.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <TransactionID>ABCDEF41394644363445313243ABCDEF</TransactionID>
 </static>
 <mutable>
 <TransactionPhase>Transfer</TransactionPhase>
 <SegmentNumber lastSegment="true">4</SegmentNumber>
 <ReturnCode>000000</ReturnCode>
 <ReportText>[EBICS_OK] OK</ReportText>
 </mutable>
 </header>
 <AuthSignature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"/>
 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <ds:DigestValue>…here hash value authentication..</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>…here signature value authentication..</ds:SignatureValue>
 </AuthSignature>
 <body>
 <ReturnCode authenticate="true">000000</ReturnCode>
 </body>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 100
 Status: Final Version 2.4.2

</ebicsResponse>

Diagram 45: EBICS response for transmission of the last order data segment for order type
IZV

5.5.1.2 Processing of EBICS messages
Chapter 5.5.1.1 describes the contents of the EBICS messages that are exchanged within
the framework of an upload transaction. The subject of this chapter is the processing of these
EBICS messages at the bank’s end. Action sequences are pointed out in the flow diagram in
Diagram 40, the course of which is described here in greater detail.

In order to simplify the description of the processes, it is assumed that every processing step
produces a return code (RC) whose value is equal to 0 (“000000”, EBICS_OK) if it has been
possible to successfully complete this step. The technical return code (RCT) and the bank-
technical return code (RCF) are set depending on the RC, and their values then flow into the
EBICS messages.

The validity of the EBICS request is verified on the basis of the XML schema definition file
“ebics_request.xsd”, and with due regard to the restrictions that have been specified for the
individual requests in Chapter 5.5.1.1. The validity verification usually takes place in parallel
and/or interlocked with the other process steps in processing the EBICS request. The
following processes dispense with representation of a process step of type “EBICS request
validity verification” in favour of the simplest possible representation. In consequence, these
processes can be terminated by the following additional technical errors:

 EBICS_INVALID_XML
The received EBICS XML message does not conform to the specifications of the XML
schema in view of syntax. The XML code is not well-formed or, according to the schema,
not valid. For example, if the upload request does not contain the element HostId (that
the schema requires).

 EBICS_INVALID_REQUEST
The received EBICS XML message does not conform to the EBICS specifications in view
of syntax, for example, if the upload request does not contain the element NumSegments
(which is optional according to the XML schema, but required according to chapter
5.5.1.1.1).

 EBICS_INVALID_REQUEST_CONTENT
The received EBICS XML message does not conform to the EBICS specifications in view
of semantics although being correct according to the schema. For example, if an upload
request contains OrderAttribute "UZHNN" and NumSegments > 0 (which is valid
according to the schema but not valid according to chapter 5.5.1.1.1)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 101
 Status: Final Version 2.4.2

5.5.1.2.1 Processing in the initialisation phase

Diagram 49 shows processing at the bank’s end of the EBICS request which is transferred
from the customer system to the bank system in the initialisation stage of an upload
transaction. The individual processing steps are explained in greater detail in the following
text:

I. Generation of an EBICS transaction (see Diagram 48)
This processing step is relevant for both upload and download transactions. The following
description takes both transaction types into consideration so that the following chapters
on the subject of download transactions will be able to refer to this description.

I.a. Verifying the order type

Verification of the order type returns the technical return code
EBICS_INVALID_ORDER_TYPE in the case of an invalid order type, or the technical
return code EBICS_UNSUPPORTED_ORDER_TYPE in the case of a valid but
optional order type that is not supported by the bank system.

I.b. Replay test

The replay test returns the following return code EBICS_TX_MESSAGE_REPLAY if
the EBICS request is a replayed request. Details on replay avoidance can be found in
the Appendix (Chapter 11.4).

I.c. Verifying the authenticity of the EBICS request (see Diagram 46):

The identification and authentication signature is provided by a technical subscriber, if
such is a component of the control data. Otherwise the identification and
authentication signature is generated by a (non-technical) subscriber of the EBICS
transaction who submits the order or, subsequently, bank-technical ES’s that relate to
an existing order. In order to be able to verify the identification and authentication
signature of a subscriber (technical or non-technical), the corresponding combination
of customer and subscriber ID must be registered in the bank system and the state of
the subscriber must be set to “Ready”. In error situations that result from an invalid
combination of customer ID / subscriber ID or an inadmissible subscriber state, the
sender receives the technical return code EBICS_AUTHENTICATION_FAILED.

Verification of the identification and authentication signature contains:
- A verification as to whether all required elements of the EBICS message have

been signed with the identification and authentication signature: These are all
XML elements of the EBICS request whose attribute value for @authenticate is
equal to “true”.

- Verification of the identification and authentication signature itself.
This processing step terminates with the technical error
EBICS_AUTHENTICATION_FAILED if the identification and authentication signature
cannot be successfully verified.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 102
 Status: Final Version 2.4.2

If the successfully-verified signature originates from a technical subscriber, the validity
and the state of the (non-technical) subscriber is also verified. Errors that result from
an invalid combination of customer ID/ subscriber ID or an inadmissible subscriber
state are communicated to the sender of the EBICS request with the help of the
technical error codes EBICS_USER_UNKNOWN and
EBICS_INVALID_USER_STATE.
Reason: If the identification and authentication signature cannot be successfully
verified, the EBICS request potentially originates from an attacker. In this event,
errors such as “Unknown subscriber” or “Inadmissible subscriber state” are not
forwarded to the sender of the EBICS request so that potential attackers are not given
precise information on the validity of subscriber IDs or the state of subscribers.
However, after the identification and authentication signature of the technical
subscriber has been successfully verified, the errors EBICS_USER_UNKNOWN and
EBICS_INVALID_USER_STATE, which relate to the non-technical subscriber of the
EBICS transaction, are forwarded to the authenticated sender.

I.d. Verifying the hash value of the bank keys

This verification is intended to prevent a subscriber from submitting orders when they
are not in possession of the financial institution’s current public keys. In Version
“H003” of EBICS the ES of the financial institutions is only planned (see Chapter
3.5.2). For this reason, only the hash values of the public identification and
authentication key and the public encryption key are verified in Version “H003”. In this
processing step, subsequent EBICS versions that support the financial institution’s
ES must also verify the hash value of the financial institution’s public bank-technical
key. For this reason, the subscriber transfers the hash values of the financial
institution’s public key with which they have been provided. The bank system verifies
these hash values. If they do not match the hash values of the current public keys,
transaction initialisation is terminated with the technical return code
EBICS_BANK_PUBKEY_UPDATE_REQUIRED.

If the subscriber does not have the financial institution’s current identification and
authentication they cannot successfully verify the identification and authentication
signature of the financial institution’s EBICS response. Nevertheless, when the error
EBICS_BANK_PUBKEY_UPDATE_REQUIRED occurs it should be verified as to
whether the bank keys are up-to-date, and if necessary the latest keys should be
downloaded with the help of the system-related order type HPB.

I.e. Subscriber-related order verifications (see Diagram 47)
I.e.a. Verifying order type authorisation

This verifiess as to whether the subscriber is entitled to submit the order type in
question. If this verification fails, transaction initialisation is terminated with the
business related error EBICS_AUTHORISATION_ORDER_TYPE_FAILED.
In the case of upload orders, order type authorisation is successful if the subscriber
has at least ES authorisation of class “T” for the order type in question.
Note: The ES authorisation of the actual signatory of the order is not verified here.
This verification is a part of the (optional) preliminary verification of an order.
In the case of download orders, the order type authorisation is not coupled to an ES
authorisation. It is verified as to whether the subscriber is authorised for the order

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 103
 Status: Final Version 2.4.2

type in question.

I.e.b. Bank-technical preliminary verification
This verification only affects upload orders, details of the preliminary verification are
given in Chapter 5.3.
If the optional preliminary verification of orders is principally not supported by the
financial institution, but the EBICS request contains data for preliminary verification
of the order, the information EBICS_NO_ONLINE_CHECKS is returned.
This technical information has no influence on the ongoing transaction. The order is
continued.
The bank-technical preliminary verification of an upload order returns the following
business related return codes in the event of an error:

• EBICS_SIGNATURE_VERIFICATION_FAILED
This business related error occurs when the ES of the order signatory could
not be successfully verified

• EBICS_INVALID_SIGNATURE_FILE_FORMAT
The submitted ES data do not conform to the specified format.

• EBICS_ PARTNER_ID_MISMATCH
The partner ID (=customer ID) of the ES file differs from the partner ID
(=customer ID) of the submitter.

• EBICS_ACCOUNT_AUTHORISATION_FAILED
This business related error code is returned when the account authorisation
verification fails for one of the signatories

• EBICS_AMOUNT_CHECK_FAILED
This business related error occurs when the limit verification fails for one of
the signatories

• EBICS_SIGNER_UNKNOWN
This business related error occurs when one of the signatories is not a valid
subscriber

• EBICS_INVALID_SIGNER_STATE
This business related error occurs when the state of one of the signatories is
not equal to “Ready”.

• For Return codes relating to certificates, refer to Annex 1.

I.e.c. Order attributes verification
The following verifications only relate to bank-technical upload orders:
The use of the order attributes "DZHNN" is not permitted if the bank has other ES files
(attribute "UZHNN") or a file with the attribute "DZHNN" for the same order (identical
partner ID / customer ID, order type, and order ID) on hand. The use of the order
attributes "UZHNN" and "OZHNN" is not permitted either if the bank has already the

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 104
 Status: Final Version 2.4.2

same order (identical customer ID, order type, and order ID) on hand and this order
was transmitted with the order attributes "DZHNN". In these cases, the bank-technical
error EBICS_INCOMPATIBLE_ORDER_ATTRIBUTE is returned.

The following verifications only relate to bank-technical download orders.
If the subscriber sets the order attributes to “DZHNN” they request the download data
without the financial institution’s ES. Transaction initialisation is terminated with the
business related error EBICS_DOWNLOAD_SIGNED_ONLY if it has been agreed
that the subscriber may retrieve download data for the given order type only with the
financial institution’s ES.
If the subscriber sets the order attributes to “OZHNN” they request the download data
with the financial institution’s ES. Transaction initialisation is terminated with the
business related return code EBICS_DOWNLOAD_UNSIGNED_ONLY if it has been
agreed that the subscriber may retrieve download data for the given order type only
without the financial institution’s ES.
In Version “H003” of the EBICS protocol the ES of the financial institutions is only
planned (see Chapter 3.5.2). For this reason, only order attributes “DZHNN” are
permitted for download orders in Version “H003”. The setting “OZHNN” is only taken
into consideration here in preparation for future EBICS versions.

I.f. Generation of a new EBICS transaction with unambiguous transaction ID

When all of the previous verifications have been successfully carried out and more
transaction steps follow, the EBICS transaction administration generates a new
EBICS transaction at the bank’s end with a transaction ID that is unambiguous
throughout the bank system. Details on generation of the transaction ID are given in
the Appendix (Chapter 11.6).

II. Pre-processing

Here, pre-processing relates to the transmitted ES’s and the order parameters of orders
with the order attributes “DZHNN” or “OZHNN”. Pre-processing is not a component of the
EBICS specification and is thus dependent on bank system implementation. For example,
intermediate storage of ES’s and order parameters is a part of this pre-processing.

III. Forwarding to managment of pending orders

If the order attributes are equal to “UZHNN”, that is, if only ES’s relating to a given order
are transmitted, the EBICS transaction comprises a single request/response pair. In this
case the transmitted order parameters and ES’s are forwarded directly to the
management of pending orders and the transaction is terminated. The component
‘management of pending orders’ is not a part of the EBICS standard.

IV. Generation of the EBICS response

This processing step generates the EBICS response that is afterwards sent to the
customer system. In the event of an error, this EBICS message contains the
corresponding technical or business related error code of preceding process steps. The
contents of this EBICS message are described in greater detail in Chapter 5.5.1.1.1.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 105
 Status: Final Version 2.4.2

RCT = EBICS_AUTHENTICATION_FAILED
RCF = 0

Validity check
USR ID/ partner ID

[RC = 0]

state check for USR
Valid states: Ready

Authentication signature verification
(signature created by USR)

[RC = 0]

[RC ≠ 0]

Validity check
user ID/ partner ID

[RC = 0]

[RC ≠ 0]

state check for user
Valid states: Ready

RCT = EBICS_UNKNOWN_USER
RCF = 0

RCT = EBICS_INVALID_USER_STATE
RCF = 0

[RC ≠ 0]

[RC ≠ 0]

[RC ≠ 0]

[EBICS message transmitted
by a technical user]

else

Authentication Check of the EBICS-Request

USR = user

USR = technical user

[RC = 0]

[USR == user]

[else]

1

1

2

2

Diagram 46: Detailed description of the process step “Authentication check of the EBICS
request”

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 106
 Status: Final Version 2.4.2

Order type authorization check

[RC = 0]

RCT = 0
RCF = EBICS_AUTHORIZATION_FAILED

Order Prevalidation
[Upload]

[Download]
[RC = 0]

RCT = 0
RCF = RC

[RC ≠ 0]

[RC ≠ 0]

Order attributes check

[RC = 0]

RCT = 0
RCF = RC

[RC ≠ 0]

User related order checks

[Credit institute
supports
prevalidation]

else

2

2

Diagram 47: Detailed description of the process step “User related order checks”

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 107
 Status: Final Version 2.4.2

Hash value checks of the credit institute’s public keys

[RCT = 0 and RCF = 0]

[RC = 0]

RCT = EBICS_BANK_PUBKEY_UPDATE_REQUIRED
RCF = 0

Creation of an EBICS transaction
with a unique transaction ID

Creation of an EBICS transaction

[UZHNN]

[OZHNN,
DZHNN]

RCT = 0
RCF = RC

Check order type

[RC = 0]

[RC ≠ 0]

[RC ≠ 0]

Replay Test

[RC = 0]

RCT = EBICS_TX_MESSAGE_REPLAY
RCF = 0

[RC ≠ 0]

User-related order checks

[Download]

[Upload]

Authentication check of the EBICS request

else

[RCT = 0 and RCF = 0]

else

1

1

Diagram 48: Detailed description of the process step “Creation of an EBICS transaction”

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 108
 Status: Final Version 2.4.2

Preprocessing: EUs, order parameters

EBICS response creation

RCT = 0
RCF = 0

Sending EBICS response

Receiving EBICS request

Creation of an EBICS transaction

[OZHNN, DZHNN]

[UZHNN] Forwarding the EUs to the
Management of outstanding orders

[RCT = 0 and RCF = 0]

else

Diagram 49: Processing the EBICS request from transaction initialisation

5.5.1.2.2 Processing in the data transfer phase

The processing at the bank’s end of the EBICS request that is transmitted in the data transfer
phase from the customer’s system to the bank’s system is represented in Diagram 51 and
Diagram 52. The individual processing steps are explained in greater detail in the following
text:

I. Verifying the EBICS transaction (see Diagram 50)
This processing step is relevant for both upload and download transactions. The following
description takes both transaction types into consideration so that the following chapters
on the subject of download transactions will be able to refer to this description.

I.a. Verifying the transaction ID

A verification is carried out as to whether the EBICS transaction with the
corresponding ID exists as an open, not yet completed, transaction in the bank
system’s EBICS transaction administration system. If this is not the case, the
technical error code EBICS_TX_UNKNOWN_TXID is returned to the sender of the
EBICS request.

I b. Verifying the authenticity of the EBICS request (see Diagram 46)
This EBICS request authenticity verification takes place in exactly the same way as in

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 109
 Status: Final Version 2.4.2

the initialisation phase of the transaction (see Chapter 5.5.1.2.1, I.c) – apart from the
fact that the required data (e.g. customer/subscriber ID) is not part of the header data
of the EBICS request but is stored in the financial institution’s transaction
administration with the transaction ID in question. If the verification cannot be carried
out successfully the EBICS response contains a corresponding error code in
accordance with the sequence shown in Diagram 46. This is one of the errors
EBICS_AUTHENTICATION_FAILED, EBICS_USER_UNKNOWN or
EBICS_INVALID_USER_STATE. Unauthenticated requests do not have any effect on
the state of the transaction in the bank system’s transaction administration. Data that
has an effect on the state of a transaction such as e.g. the next expected transaction
step or the current recovery counter, is not changed. This prevents attackers from
being able to have any effect on a transaction with the help of unauthenticated EBICS
requests. The transaction can be continued by the subscriber as if the EBICS request
with the invalid identification and authentication signature had not been received.

I c. Verifying TxPhase/ TxStep from the EBICS request

At this point, a verification is carried out as to whether the transaction step from the
EBICS request matches the current state of the EBICS transaction in the bank
system if one assumes a specific sequential order for the transaction steps.

In the case of an upload transaction, the sequential order according to Diagram 40 is
assumed. Verificationing of the transaction phase / transaction step is successful
when:

 The last transaction step initialised by the subscriber has been successfully
completed, i.e. initialisation and transmission of the nth data segment was
successful.

 The transaction step from the EBICS request is the next transaction step in the
sequential order of transaction steps, i.e. it is the transmission of the 1st or the
(n+1)th data segment.

The normal sequential order of transaction steps of a download transaction is shown
in Diagram 56. The transaction phase / transaction step is deemed to have been
successfully verified when the following two conditions are met:

 The last transaction step initiated by the subscriber has been successfully
implemented, i.e. the initialisation (and hence transmission of the first data
segment, or the request of the nth data segment within the framework of the data
transfer were successful.

 The transaction step from the EBICS request is the next transaction step in the
sequential order of the transaction steps, i.e. it is the request for the (n+1)th data
segment or acknowledgement of the downloaded data where n represents the
last data segment.

II. Evaluation of the EBICS transaction verification results

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 110
 Status: Final Version 2.4.2

If the transaction step verification was unsuccessful, then:

 A verification is carried out as to whether the upload transaction can be recovered, if
the bank system supports the recovery of transactions. This verification is carried out
in accordance with the description in Chapter 5.5.2. The technical error code
EBICS_TX_RECOVERY_SYNC is returned if the transaction can be recovered,
otherwise the transaction is terminated with the technical error code
EBICS_TX_ABORT.

 The upload transaction is terminated with the business related error code
EBICS_RECOVERY_NOT_SUPPORTED if the bank system does not support
transaction recovery. If MAX is set to 0, the flow diagram also considers the case
where recovery is not supported.

III. Verifying segment number and segment size

The serial number of the transmitted order data segment
(ebicsRequest/header/mutable/SegmentNumber) must be less than or equal to
the total number of data segments that are to be transmitted. If the number of transmitted
order data segments matches the total number, the value of attribute
ebicsRequest/header/mutable/SegmentNumber@lastSegment must also be
equal to “true”. If one of these two conditions is not fulfilled, the transaction is terminated
with the technical error code EBICS_TX_SEGMENT_NUMBER_EXCEEDED.

If the serial number of the transmitted order data segment is less than the total number of
the order data segments that are to be transmitted and the value of attribute
ebicsRequest/header/mutable/SegmentNumber@lastSegment is nevertheless
“true”, then technical return code EBICS_TX_SEGMENT_NUMBER_UNDERRUN of error
class “Note” is returned.

The size of the transmitted order data segment may not exceed the segment size of 1 MB
that has been firmly specified for EBICS “H003”. Otherwise the transaction is terminated
with the technical error code EBICS_SEGMENT_SIZE_EXCEEDED.

IV. Pre-processing

Here, pre-processing relates to the transmitted order data segment. Pre-processing of
order data segments is not part of the EBICS specification. It is dependent on the bank
system implementation, intermediate storage of the order data segment may be a part of
pre-processing.

V. Forwarding to management of pending orders

If the transmitted order data segment was the last one, and the matter at hand is a bank-
technical upload order, all of the order parameters, ES’s and order data transmitted within
the framework of the EBICS transaction are forwarded to the management of pending
orders. Following this, the EBICS transaction can be terminated.
The component ‘management of pending orders’ is not a part of the EBICS standard.

VI. Verifying and implementing the order

If the transmitted order data segment was the last one, and if the order is a system-related
upload order, it is synchronously verified and implemented on the basis of the transmitted

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 111
 Status: Final Version 2.4.2

order data. The returned technical or business related error codes are dependent on the
order type and are defined in the chapters in which these order types are described.

VII. Generation of the EBICS response

This processing step generates the EBICS response that is afterwards sent to the
customer system. In the event of an error, this EBICS message contains the
corresponding technical / business related error code of the preceding process steps. The
contents of this EBICS message are described in greater detail in Chapter 5.5.1.1.2.

Validity check
TxID

RCT = EBICS_TX_UNKNOWN_TXID
RCF = 0

else

Check TxPhase/ TxStep from the EBICS request

[RC = 0]

[RC ≠ 0]

EBICS transaction verification

Authentication check of the EBICS request

[RCT = 0 and RCF = 0]

Diagram 50: Detailed description of the process step “EBICS transaction verification”

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 112
 Status: Final Version 2.4.2

Receiving EBICS request

[RC = 0]

EBICS transaction abort
(release of resources)

[RC ≠ 0] [RecoveryCounter == MAX]

RCT = EBICS_TX_ABORT
RCF = 0

RCT = EBICS_TX_RECOVERY_SYNC
RCF = 0

RecoveryCounter++

[RecoveryCounter
< MAX]

EBICS transaction verification

RCT = 0
RCF = 0

[RCT = 0 and RCF = 0]

2

1

else

Diagram 51: Processing an EBICS request for transmission of an order data segment (part
1)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 113
 Status: Final Version 2.4.2

Preprocessing: order data segment

EBICS response creation

Sending EBICS response

EBICS transaction closure
(release of resources)

[last segment]

else

[system-related
order]

[business-driven
order]

Order check and order execution

[RC ≠ 0]

[RC = 0]

[RC is a
non-technical error] RCT = 0

RCF = RC

RCT = RC
RCF = 0

else

Forwarding the order data,
order parameters and order EUs to the

Management of outstanding orders

[RC = 0]

[RC ≠ 0] RCT = RC
RCF = 0

Segment number / size check

[RC = 0]

[RC ≠ 0] RCT = RC
RCF = 0

EBICS transaction abort
(release of resources)

else

[RCT ==
*EXCEEDED]

1

2

Diagram 52: Processing an EBICS request for transmission of an order data segment (part
2)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 114
 Status: Final Version 2.4.2

5.5.2 Recovery of upload transactions
The customer system can initiate the recovery mechanism when one of the following error
situations occurs:

 Transport error during transmission of an EBICS request in the data transfer phase of the
transaction

 Timeout or transport error when receiving an EBICS transaction in the data transfer
phase of the transaction

 Loss of the transaction state at the subscriber’s end.

Incorrect processing of an EBICS request at the bank’s end during the data transfer phase,
caused by e.g. errors in the pre-processing of a transmitted order data segment, may require
renewed transmission of this request. This is a special recovery case, since the customer
system does not recognise the necessity for repetition of the transmission without further
action. This special case can be dealt with by the EBICS recovery mechanism.

EBICS uses an optimistic approach when recovering an upload transaction and dispenses
with a separate synchronisation step with the bank system. If one of the above error
situations occurs, the customer system initially assumes knowledge of the transaction’s
recovery point due to the transaction data stored (possibly in a sustained manner) in the
customer system.

If the customer system assumes that the recovery point is the transmission of the nth order
data segment, then the next initiated transaction step is transmission of the (n+1)th order data
segment. EBICS requests within the framework of the recovery of upload transactions do not
differ from the EBICS request of a normal, error-free flow of an upload transaction.

By way of example, the flow of a transaction that repeatedly necessitates recovery is shown
in Diagram 53. In each case, the recovery takes place without explicit synchronisation
between the customer system and the bank system. The 2nd order data segment is
transmitted three times since the customer system could not receive the corresponding
EBICS response due to a timeout or a transport error. On the second and third transmission
of the 2nd order data segment, the customer system assumes that the recovery point is
transmission of the 1st order data segment. The value of the recovery counter is equal to 2
after the third and successful transmission of the 2nd order data segment, since the last two
transmissions of the 2nd order data segment were evaluated as recovery attempts by the
bank system. The transaction finally fails due to the number of recovery attempts being too
high.

If the assumption regarding the recovery point is false, the EBICS response for transmission
of the (n+1)th data segment receives the actual recovery point of the transaction in addition to
the technical return code EBICS_TX_RECOVERY_SYNC. For example, if this recovery point
is the transmission of order data segment k, the transaction can easily be resumed after this
synchronisation with transmission of segments k+1, k+2, etc.

Diagram 54 shows the successful flow of a transaction that contains a recovery of the
transaction after an explicit synchronisation between the customer system and the bank

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 115
 Status: Final Version 2.4.2

system. Here, the customer system transmits order data segment 1 in a state in which the
bank system actually expects segment 3. The financial institution’s EBICS response (see
Diagram 55) thus contains the recovery point of the transaction, which in this case is
transmission of the 2nd order data segment. Following this, the customer system continues
with transmission of order data segment 3 and ends the transaction with the transmission of
the last segment 4.

Independent of whether a customer system detects errors in the flow of a transaction, the
bank system can force renewed transmission of an EBICS request. Analogously to the above
recovery situations, this is achieved by the associated EBICS response containing the
technical return code EBICS_TX_RECOVERY_SYNC as well as the recovery point of the
transaction.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 116
 Status: Final Version 2.4.2

Transport layer

ok

Customer system Bank system

transfer of data segment 1 for transaction xxx

transfer of data segment 2 for transaction xxx

transmission failure, timeout

1. transfer retry of data segment 2 for transaction xxx

transaction initialisation

ok, unique transaction ID = xxx

transmission failure, timeout

2. transfer retry of data segment 2 for transaction xxx

ok

RecoveryCounter == 0,
recovery point:

initialisation

RecoveryCounter == 0,
recovery point:

transfer/ segment 1

RecoveryCounter == 1,
recovery point:

transfer/ segment 1

RecoveryCounter == 2 == MAX,
recovery point:

transfer/ segment 2
transfer of data segment 3 for transaction xxx

transmission failure, timeout

1. transfer retry of data segment 3 for transaction xxx

system-related error: EBICS_TX_ABORT

RecoveryCounter == 2 == MAX,
recovery point:

transfer/ segment 2

RecoveryCounter == 0,
recovery point:

transfer/ segment 1

Diagram 53: Termination of the recovery of an upload transaction due to the maximum
number of recovery attempts being exceeded

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 117
 Status: Final Version 2.4.2

ok

Customer system Bank system

transfer of data segment 2 for transaction xxx

transfer of data segment 1(≠ 3) for transaction xxx

transfer of data segment 3 for transaction xxx

transaction initialisation

ok, unique transaktion ID = xxx

system-related return code: EBICS_TX_RECOVERY_SYNC,
recovery point: transfer/ data segment 2

ok

ok

transfer of data segment 1 for transaction xxx

transfer of data segment 4 for transaction xxx

ok

Transport layer

RecoveryCounter == 0,
recovery point:

initialisation

RecoveryCounter == 0,
recovery point:

transfer/ segment 1

RecoveryCounter == 1,
recovery point:

transfer/ segment 2

RecoveryCounter == 0,
recovery point:

transfer/ segment 2

RecoveryCounter == 1,
recovery point:

transfer/ segment 3

Diagram 54: Recovery of an upload transaction with explicit synchronisation between
customer system and bank system

<?xml version="1.0" encoding="UTF-8"?>
<ebicsResponse
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_response.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <TransactionID>ABCDEF41394644363445313243ABCDEF</TransactionID>
 </static>
 <mutable>
 <TransactionPhase>Transfer</TransactionPhase>
 <SegmentNumber>2</SegmentNumber>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 118
 Status: Final Version 2.4.2

 <ReturnCode>061101</ReturnCode>
 <ReportText>[EBICS_TX_RECOVERY_SYNC] Synchronisation necessary</ReportText>
 </mutable>
 </header>
 <AuthSignature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"/>
 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <ds:DigestValue>.. here hash value authentication ..</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>.. here siganture value authentication ..</ds:SignatureValue>
 </AuthSignature>
 <body>
 <ReturnCode authenticate="true">000000</ReturnCode>
 </body>
</ebicsResponse>

Diagram 55: EBICS response with technical error EBICS_TX_RECOVERY_SYNC

5.6 Download transactions

5.6.1 Sequence of download transactions
The sequence of a download transaction is shown in Diagram 56 by means of a flow
diagram. This sequence diagram shows the exchange of EBICS messages in the individual
phases of a download transaction. The first order data segment is contained in the EBICS
response of the transaction initialisation. All other order data segments are transmitted in a
loop that breaks off as soon as the last data segment has been received by the customer
system. (see loop break-off condition “[last data segment has been received]”). Finally, the
successful receipt of all order data segments is acknowledged by the customer system.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 119
 Status: Final Version 2.4.2

Customer system

transaction initialisation

request data segment for transaction xxx

ok, unique transaction ID = xxx, segment 1 of the requested data

ok, transfer of data segment

receipt for download data of transaction xxx (acknowledgement)

ok

Bank system

loop [last segment has been transmitted]

Diagram 56: Error-free sequence of a download transaction

5.6.1.1 Description of EBICS messages
For clarification purposes, the following description of the transaction steps in a download
transaction use example messages for the processing of an STA order. It refers to elements
of these example messages, using XPath notation.

The following chapters describe the EBICS messages in the individual phases of a download
transaction. The data that is a component of these messages is listed here. Data that is
fundamentally optional is marked “(optional)”. Data that may only be missing under certain
conditions is instead marked “(conditional)”. Optional XML elements that are missing in the
description of an EBICS message relating to a specific transaction phase may not be present
in this EBICS message. Optional XML elements that are present in the description of an
EBICS message relating to a specific transaction phase MUST always be placed
correspondingly in this EBICS message.

EBICS requests for download transactions are (XML) instance documents that conform to
ebics_request.xsd and comprise the top-level element ebics which is declared in
ebics_request.xsd. EBICS responses for download transactions are instance documents that
conform to ebics_response.xsd and comprise the top-level element ebics which is again
declared in ebics_response.xsd.

5.6.1.1.1 EBICS messages in transaction initialisation

 Transmission of the following data in the EBICS request (see example in Diagram 57):
- Host ID of the EBICS bank computer system

(ebicsRequest/header/static/HostID)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 120
 Status: Final Version 2.4.2

- Transaction phase (ebicsRequest/header/mutable/TransactionPhase) with
the setting “Initialisation”

- Combination of Nonce and Timestamp to avoid replaying old EBICS messages
(ebicsRequest/header/static/Nonce,
ebicsRequest/header/static/Timestamp)

- Subscriber (ebicsRequest/header/static/PartnerID,
ebicsRequest/header/static/UserID) that is submitting an order or that is
providing bank-technical ES’s for an existing order.

- (Conditional) technical subscriber (ebicsRequest/header/static/PartnerID,
ebicsRequest/header/static/SystemID)
SystemID must be present if the customer system is a multi-user system. The
technical subscriber is responsible for the generation of the EBICS requests
(including the identification and authentication signatures) that belong to orders
that are submitted or bank-technically signed by the subscriber.

- (Optional) information on the customer product
(ebicsRequest/header/static/Product)

- Order type (ebicsRequest/header/static/OrderDetails/OrderType)

- Order attributes
(ebicsRequest/header/static/OrderDetails/OrderAttribute)
If the subscriber sets the order attributes to “DZHNN” they request the download
data without the financial institution’s ES. On the other hand, if they set the order
attributes to “OZHNN” they request the download data with the financial
institution’s ES.

- Order parameters
(ebicsRequest/header/static/OrderDetails/StandardOrderParams)
The characteristics of the order parameters are dependent on the order type. For
STA, the order parameters are of type StandardOrderParamsType

- Hash values of the financial institution’s public keys that are available to the subscriber
(ebicsRequest/header/static/BankPubKeyDigests/Authentication,
ebicsRequest/header/static/BankPubKeyDigests/Encryption,
ebicsRequest/header/static/BankPubKeyDigests/Signature).
Both the utilised hash algorithm and the version of the corresponding identification
and authentication, encryption and signature process will be specified for each of
these hash values.
In Version “H003” of the EBICS protocol the ES of the financial institutions is only
planned (see Chapter 3.5.2). The element BankPubKeyDigests/Signature is
already contained in this description in preparation for future versions of EBICS,
but in Version “H003” its maximum frequency (maxOccurs) is set to 0.

- Security medium for the subscriber’s bank-technical
key(ebicsRequest/header/static/SecurityMedium)

- Identification and authentication signature of the technical subscriber, if such is
available, otherwise the identification and authentication signature of the
subscriber themselves (ebicsRequest/AuthSignature)
The identification and authentication signature includes all XML elements of the

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 121
 Status: Final Version 2.4.2

EBICS request whose attribute value for @authenticate is equal to “true”. The
definition of the XML schema “ebics_request.xsd“ guarantees that the value of the
attribute @authenticate is equal to “true” for precisely those elements that also
need to be signed.

.

<?xml version="1.0" encoding="UTF-8"?>
<ebicsRequest
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_request.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <HostID>EBIXHOST</HostID>
 <Nonce>98498A65465C645E645F64565462C645</Nonce>
 <Timestamp>2005-01-30T15:40:45.123Z</Timestamp>
 <PartnerID>CUSTM001</PartnerID>
 <UserID>USR001</UserID>
 <Product Language="en" InstituteID="Institute ID">Product Identifier</Product>
 <OrderDetails>
 <OrderType>STA</OrderType>
 <OrderAttribute>DZNNN</OrderAttribute>
 <StandardOrderParams>
 <DateRange>
 <Start>2005-01-01</Start>
 <End>2005-01-30</End>
 </DateRange>
 </StandardOrderParams>
 </OrderDetails>
 <BankPubKeyDigests>
 <Authentication Version="X002"
Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">1H/rQr2Axe9hYTV2n/tCp+3UIQQ=</Authenticati
on>
 <Encryption Version="E002"
Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">2joEROI3092OIFP394+WOIer2WI=</Encryption>
 </BankPubKeyDigests>
 <SecurityMedium>0000</SecurityMedium>
 </static>
 <mutable>
 <TransactionPhase>Initialisation</TransactionPhase>
 </mutable>
 </header>
 <AuthSignature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"/>
 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <ds:DigestValue> …here hash value for authentication..</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue> …here authentication signature..</ds:SignatureValue>
 </AuthSignature>
 <body/>
</ebicsRequest>
Diagram 57: EBICS request for transaction initialisation for order type STA

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 122
 Status: Final Version 2.4.2

 Transmission of the following data in the EBICS response (see example in Diagram 58)
- Bank-technical return code (ebicsResponse/body/ReturnCode)

- Technical return code (ebicsResponse/header/mutable/ReturnCode)

- Technical report text (ebicsResponse/header/mutable/ReportText)

- (Conditional) Transaction ID that is unambiguous throughout the bank system
(ebicsResponse/header/static/TransactionID), if no technical errors
have occurred during the transaction initialisation

- Transaction phase (ebicsResponse/header/mutable/TransactionPhase) with
the setting “Initialisation”

- (Conditional) Total number of order data segments to be transmitted
(ebicsResponse/header/static/NumSegments), if no technical or bank-
technical errors have occurred

- (Conditional) Serial number of the order data segment transmitted in this response
(ebicsResponse/header/mutable/SegmentNumber), if no technical or bank-
technical errors have occurred.
SegmentNumber is always set to 1 in the initialisation phase. The attribute
ebicsResponse/header/mutable/SegmentNumber@lastSegment specifies
whether it is the last data segment

- Identification and authentication signature of the financial institution
(ebicsResponse/AuthSignature)
The identification and authentication signature includes all XML elements of the
EBICS response whose attribute value for @authenticate is equal to “true”. The
definition of the XML schema “ebics_response.xsd“ guarantees that the value of
the attribute @authenticate is equal to “true” for precisely those elements that
also need to be signed.

- (Conditional) information for encryption of the order data and possibly the ES of the
order data (ebicsResponse/body/DataTransfer/DataEncryptionInfo), if
no errors of a technical or bank-technical nature have occurred.
In particular, DataEncryptionInfo also contains the asymmetrically-encrypted
transaction key
(ebicsResponse/body/DataTransfer/DataEncryptionInfo/Transacti
onKey)

- (Conditional) The first order data segment
(ebicsResponse/body/DataTransfer/OrderData), if no errors of a
technical or bank-technical nature have occurred

- (Conditional) The bank-technical ES of the order data from the financial institution
(ebicsResponse/body/DataTransfer/SignatureData), if no errors of a
technical or bank-technical nature have occurred and if the order attributes are
equal to “OZHNN”.
In Version “H003” of the EBICS protocol the ES of the financial institutions is only
planned (see Chapter 3.5.2). The setting “OZHNN” is not valid in EBICS Version
“H003” and hence the condition for the presence of element SignatureData is

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 123
 Status: Final Version 2.4.2

not fulfilled. The element SignatureData is nevertheless contained in this
description in preparation for future versions of EBICS

- (Optional) time stamp for the last updating of the bank parameters
(ebicsResponse/body/TimestampBankParameter).

<?xml version="1.0" encoding="UTF-8"?>
<ebicsResponse
xmlns="http://www.ebics.org/H003"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_response.xsd"
Version="H003" Revision="1">
<header authenticate="true">
 <static>
 <TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>
 <NumSegments>2</NumSegments>
 </static>
 <mutable>
 <TransactionPhase>Initialisation</TransactionPhase>
 <SegmentNumber>1</SegmentNumber>
 <ReturnCode>000000</ReturnCode>
 <ReportText>[EBICS_OK] OK</ReportText>
 </mutable>
</header>
<AuthSignature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256">
 </ds:SignatureMethod>
 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue> …here authentication signature..</ds:SignatureValue>
</AuthSignature>
<body>
 <DataTransfer>
 <DataEncryptionInfo authenticate="true">
 <EncryptionPubKeyDigest Version="E002"
Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">..here hash value of the public bank key
for encryption..</EncryptionPubKeyDigest>
 <TransactionKey>En6KEB6ArEzw+iq4N1wm6Eptcyx…</TransactionKey>
 <HostID>EBIXHOST</HostID>
 </DataEncryptionInfo>
 <OrderData>…</OrderData>
 </DataTransfer>
 <ReturnCode authenticate="true">000000</ReturnCode>
</body>
</ebicsResponse>

Diagram 58: EBICS response for transaction initialisation for order type STA

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 124
 Status: Final Version 2.4.2

5.6.1.1.2 EBICS messages in the data transfer phase

 Transmission of the following data in the EBICS request (see example in Diagram 59):
Host ID of the EBICS bank computer system
(ebicsRequest/header/static/HostID)

Data for identification of the current transaction step:
- Transaction ID (ebicsRequest/header/static/TransactionID)

- Transaction phase (ebicsRequest/header/mutable/TransactionPhase)
with the setting “Transfer”

- Serial number of the order data segment that is to be downloaded in this transaction
step (ebicsRequest/header/mutable/SegmentNumber)
Attribute ebicsRequest/header/mutable/SegmentNumber@lastSegment
has no meaning for this EBICS request

Identification and authentication signature of the technical subscriber, if such is
available, otherwise the identification and authentication signature of the subscriber
themselves (ebicsRequest/AuthSignature)
The identification and authentication signature includes all XML elements of the EBICS
request whose attribute value for @authenticate is equal to “true”. The definition of
the XML schema “ebics_response.xsd“ guarantees that the value of the attribute
@authenticate is equal to “true” for precisely those elements that also need to be
signed.

<?xml version="1.0" encoding="UTF-8"?>
<ebicsRequest
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_request.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <HostID>EBIXHOST</HostID>
 <TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>
 </static>
 <mutable>
 <TransactionPhase>Transfer</TransactionPhase>
 <SegmentNumber>2</SegmentNumber>
 </mutable>
 </header>
 <AuthSignature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256">
 </ds:SignatureMethod>
 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <ds:DigestValue>… here hash value for authentication…</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo> <ds:SignatureValue> …here authentication signature..</ds:SignatureValue>
 </AuthSignature>
 <body/>
</ebicsRequest>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 125
 Status: Final Version 2.4.2

Diagram 59: EBICS request for transmission of the next order data segment for order type
STA

 Transmission of the following data in the EBICS response (see example in Diagram 60)

- Bank-technical return code (ebicsResponse/body/ReturnCode)

- Technical return code (ebicsResponse/header/mutable/ReturnCode)

- Technical report text (ebicsResponse/header/mutable/ReportText)

- Data for identifying a transaction step
If the technical return code has the value EBICS_TX_RECOVERY_SYNC, this
transaction step identifies the last recovery point of the download transaction.
However, if no technical or business related errors have not occurred in this
example, this transaction step reflects the current transaction step:

- Transaction ID (ebicsResponse/header/static/TransactionID)

- Transaction phase (ebicsResponse/header/mutable/TransactionPhase)

- Serial number of the order data segment
(ebicsResponse/header/mutable/SegmentNumber).
This is the number of the order data segment that has been requested in the EBICS
request or, in the event of the error EBICS_TX_RECOVERY_SYNC, the number of
the last order data segment that has been successfully transmitted to the customer
system by the bank system. In the event of the error
EBICS_TX_RECOVERY_SYNC, the value of SegmentNumber is always equal to 1
if the value of TransactionPhase is “Initialisation”.
The attribute
ebicsResponse/header/mutable/SegmentNumber@lastSegment specifies
whether it is the last order data segment.

- Identification and authentication signature of the financial institution
(ebicsResponse/AuthSignature)
The identification and authentication signature includes all XML elements of the
EBICS response whose attribute value for @authenticate is equal to “true”. The
definition of the XML schema “ebics_response.xsd“ guarantees that the value of
the attribute @authenticate is equal to “true” for precisely those elements that
also need to be signed.

- (Conditional) The requested order data segment
(ebicsResponse/body/DataTransfer/OrderData), if no errors of a
technical or bank-technical nature have occurred.

<?xml version="1.0" encoding="UTF-8"?>
<ebicsResponse
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_response.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 126
 Status: Final Version 2.4.2

 </static>
 <mutable>
 <TransactionPhase>Transfer</TransactionPhase>
 <SegmentNumber lastSegment="true">2</SegmentNumber>
 <ReturnCode>000000</ReturnCode>
 <ReportText>[EBICS_OK] OK</ReportText>
 </mutable>
 </header>
 <AuthSignature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256">
 </ds:SignatureMethod>
 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <ds:DigestValue>… here hash value for authentication …</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>…here authentication signature… </ds:SignatureValue>
 </AuthSignature>
 <body>
 <DataTransfer>
 <OrderData>…</OrderData>
 </DataTransfer>
 <ReturnCode authenticate="true">000000</ReturnCode>
 </body>
</ebicsResponse>

Diagram 60: EBICS response for transmission of the last order data segment for order type
STA

5.6.1.1.3 EBICS- messages in the acknowledgement phase
 Transmission of the following data in the EBICS request (see example in Diagram 61)

- Host ID of the EBICS bank computer system
(ebicsRequest/header/static/HostID)

- Data for identification of the current transaction step:
- Transaction ID (ebicsRequest/header/static/TransactionID)

- Transaction phase (ebicsRequest/header/mutable/TransactionPhase)
with the setting “Receipt”

- Identification and authentication signature of the technical subscriber, if such is
available, otherwise the identification and authentication signature of the
subscriber themselves (ebicsRequest/AuthSignature)
The identification and authentication signature includes all XML elements of the
EBICS request whose attribute value for @authenticate is equal to “true”. The
definition of the XML schema “ebics_request.xsd“ guarantees that the value of the
attribute @authenticate is equal to “true” for precisely those elements that also
need to be signed

- Acknowledgement (ebicsRequest/body/TransferReceipt/ReceiptCode):
The value of the acknowledgement is 0 (“positive acknowledgement”) if download

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 127
 Status: Final Version 2.4.2

and processing of the order data was successful. Otherwise the value of the
acknowledgement is 1 (“negative acknowledgement”).

<?xml version="1.0" encoding="UTF-8"?>
<ebicsRequest
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_request.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <HostID>EBIXHOST</HostID>
 <TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>
 </static>
 <mutable>
 <TransactionPhase>Receipt</TransactionPhase>
 </mutable>
 </header>
 <AuthSignature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256">
 </ds:SignatureMethod>
 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <ds:DigestValue>…here hash value for authentication …</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>… here authentication signature…</ds:SignatureValue>
 </AuthSignature>
 <body>
 <TransferReceipt authenticate="true">
 <ReceiptCode>0</ReceiptCode>
 </TransferReceipt>
 </body>
</ebicsRequest>

Diagram 61: EBICS request for the acknowledgement of download data

 Transmission of the following data in the EBICS response (see example in Diagram 62)

- Bank-technical return code (ebicsResponse/body/ReturnCode)

- Technical return code (ebicsResponse/header/mutable/ReturnCode)

- Technical report text (ebicsResponse/header/mutable/ReportText)

- Data for identification of a transaction step:
If the technical return code has the value EBICS_TX_RECOVERY_SYNC, this
transaction step identifies the last recovery point of the download transaction.
However, if no technical or business related errors have occurred, this transaction
step reflects the current transaction step, i.e. acknowledgement of the download
data:

- Transaction ID (ebicsResponse/header/static/TransactionID)

- Transaction phase (ebicsResponse/header/mutable/TransactionPhase)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 128
 Status: Final Version 2.4.2

- (Conditional) Serial number of the order data segment
(ebicsResponse/header/mutable/SegmentNumber) if the error
EBICS_TX_RECOVERY_SYNC has occurred and consequently the value of
TransactionPhase is “Initialisation” or “Transfer”.
This is the number of the order data segment that, from the bank system’s
perspective, was the last one to have been successfully transmitted to the customer
system. The value of SegmentNumber is always equal to 1 if the value of
TransactionPhase is “Initialisation”.
The attribute
ebicsResponse/header/mutable/SegmentNumber@lastSegment specifies
whether it is the last order data segment.

- Identification and authentication signature of the financial institution
(ebicsResponse/AuthSignature)
The identification and authentication signature includes all XML elements of the
EBICS response whose attribute value for @authenticate is equal to “true”. The
definition of the XML schema “ebics_response.xsd“ guarantees that the value of
the attribute @authenticate is equal to “true” for precisely those elements that
also need to be signed.

<?xml version="1.0" encoding="UTF-8"?>
<ebicsResponse
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_response.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>
 </static>
 <mutable>
 <TransactionPhase>Receipt</TransactionPhase>
 <ReturnCode>011000</ReturnCode>
 <ReportText>[EBICS_POSTPROCESS_DONE] positive receipt received </ReportText>
 </mutable>
 </header>
 <AuthSignature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256">
 </ds:SignatureMethod>
 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <ds:DigestValue>… here hash value for authentication</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>… here authentication signature…</ds:SignatureValue>
 </AuthSignature>
 <body>
 <ReturnCode authenticate="true">000000</ReturnCode>
 </body>
</ebicsResponse>

Diagram 62: EBICS response for the acknowledgement of download data

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 129
 Status: Final Version 2.4.2

5.6.1.2 Processing the EBICS messages
Chapter 5.6.1.1 describes the contents of the EBICS messages that are exchanged within
the framework of a download transaction. The subject of this chapter is the processing of
these EBICS messages. Action sequences are pointed out in the flow diagram in Diagram
56, the course of which is described here in greater detail.

In order to simplify the description of the processes, it is assumed that every processing step
produces a return code (RC) whose value is equal to EBICS_OK (000000) if it has been
possible to successfully complete this step. The technical return code (RCT) and the bank-
technical return code (RCF) are set depending on the RC, and their values then flow into
EBICS messages.

The validity of the EBICS requests is verified on the basis of the XML schema definition file
“ebics_request.xsd”, and with due regard to the restrictions that have been specified for the
individual requests in Chapter 5.6.1.1. The validity verification usually takes place in parallel
and/or interlocked with the other steps in processing the EBICS request. The following
processes dispense with representation of a process step of type “EBICS request validity
verification” in favour of the simplest possible representation. In consequence, these
processes can be terminated by the following additional technical errors:
EBICS_INVALID_XML, EBICS_INVALID_REQUEST, or
EBICS_INVALID_REQUEST_CONTENT. For Return codes relating to certificates, refer to
Annex 1
.

5.6.1.2.1 Processing in the initialisation phase

Diagram 63 shows processing at the bank’s end of the EBICS request which is sent from the
customer system to the bank system in the initialisation stage of a download transaction. The
individual processing steps are explained in greater detail in the following text:

I. Generation of an EBICS transaction (see 5.5.1.2.10 Point 1 and Diagram 48)

II. Termination of the EBICS transaction

If the requested download data is not available, the EBICS transaction is terminated with
the business related return code EBICS_NO_DOWNLOAD_DATA_AVAILABLE.

III. Provision of data

In this processing step the first order data segment is provided for the purpose of being
embedded in the EBICS response. If the financial institution uses the bank-technical ES’s
for the current order type and the current subscriber (submitter), the financial institution’s
bank-technical ES’s are also provided via the order data.

In Version “H003” of the EBICS protocol the ES of the financial institutions is only planned
(see Chapter 3.5.2). They are only taken into consideration here in preparation for future
EBICS versions.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 130
 Status: Final Version 2.4.2

The provision of download data is not a part of EBICS, it is dependent on the
implementation of the bank system.

IV. Generation of the EBICS response

This processing step generates the EBICS response that is afterwards sent to the
customer system. If all previous processing steps have been successful, this EBICS
message contains the first order data segment and possibly also the bank-technical
signature for the (entire) order data. In the event of an error, this EBICS message contains
the corresponding technical or business related error code. The contents of this EBICS
message are described in greater detail in Chapter 5.6.1.1.1.

Receiving EBICS request

Supply of the following data:
1st order data segment,

planned: order-related EU of the credit institute

RCT = 0
RCF = EBICS_NO_DOWNLOAD_DATA_AVAILABLE

EBICS response creation

[Download data
available]

RCT = 0
RCF = 0

Sending EBICS response

Creation of an EBICS transaction

EBICS transaction closure
(release of resources)

[No download data
available]

[RCT = 0 and RCF = 0]

else

Diagram 63: Processing the EBICS request of the initialisation phase of a download
transaction

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 131
 Status: Final Version 2.4.2

5.6.1.2.2 Processing in the data transfer phase

Diagram 65 shows processing at the bank’s end of the EBICS request which is transferred
from the customer system to the bank system in the data transfer stage of an EBICS
transaction. The individual processing steps are explained in greater detail in the following
text:

I. Verifying the download transaction (see Diagram 64)

I.a. Verifying the EBICS transaction (see 5.5.1.2.2 Point 1 and Diagram 50)

I.b. Evaluation of the EBICS transaction verification results

If the transaction step verification is unsuccessful, then:
 A verification is carried out as to whether the download transaction can be

recovered, if the bank system supports the recovery of transactions. This
verification is carried out in accordance with the description in Chapter 5.6.2. If the
verification is successful, the technical return code
EBICS_TX_RECOVERY_SYNC is returned, otherwise the transaction is
terminated with the technical return code EBICS_TX_ABORT.

 The download transaction is terminated with the business related error code
EBICS_RECOVERY_NOT_SUPPORTED if the bank system does not support
transaction recovery. If MAX is set to 0 in the flow diagram, the case is also
considered where recovery is not supported.

II. Provision of data

In this processing step the requested order data segment is provided for the purpose of
being embedded in the EBICS response. The provision of download data is not a part of
EBICS, it is dependent on the implementation of the bank system.

III. Generation of the EBICS response

This processing step generates the EBICS response that is afterwards sent to the
customer system. If all previous processing steps have been successful, this EBICS
message contains the order data segment that was requested in the corresponding
EBICS request. In the event of an error, this EBICS message contains the corresponding
technical business related error code. The contents of this EBICS message are described
in greater detail in Chapter 5.6.1.1.2.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 132
 Status: Final Version 2.4.2

EBICS transaction abort
(release of resources)

[RC ≠ 0]

[RecoveryCounter
== MAX]

RCT = EBICS_TX_ABORT
RCF = 0

RCT = EBICS_TX_RECOVERY_SYNC
RCF = 0;

RecoveryCounter++

[RecoveryCounter
< MAX]Invalid Txstep

Valid
Txstep

[RecoveryCounter
== MAX]

[RecoveryCounter
< MAX]

RecoveryCounter++

EBICS transaction verification

Download transaction verification

[RC = 0]

[RCT = 0 and RCF = 0]

[else]

Diagram 64: Detailed description of the process step “Download transaction verification”

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 133
 Status: Final Version 2.4.2

Supply of the requested
order data segment

EBICS response creation

Sending EBICS response

Receiving EBICS request

Download transaction verification

RCT = 0
RCF = 0

[RCT = 0 and RCF = 0]

[else]

Diagram 65: Processing an EBICS request for requesting a order data segment

5.6.1.2.3 Processing in the acknowledgement phase

Diagram 66 shows processing at the bank’s end of the EBICS request which is transferred
from the customer system to the bank system in the acknowledgement stage of an EBICS
transaction.

The individual processing steps are explained in greater detail in the following text:

I. Verifying the download transaction (see description in Chapter 5.6.1.2.2, Point 1)

II. Download post-processing

Positive acknowledgement means that it was possible to successfully download and
process the order data from the customer system. In contrast to negative
acknowledgement, the consequence of this is that finishing-off activities can now be
carried out on the bank system such as e.g. marking the order data as “downloaded”.
The EBICS transaction is terminated by the bank system, independent of the type of
acknowledgement.

III. Termination of the EBICS transaction

IV. Generation of the EBICS response
This processing step generates the EBICS response that is afterwards sent to the
customer system. In the event of positive acknowledgement, the technical return code
EBICS_DOWNLOAD_POSTPROCESS_DONE is returned, in the event of negative
acknowledgement the technical return code

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 134
 Status: Final Version 2.4.2

EBICS_DOWNLOAD_POSTPROCESS_SKIPPED is returned. In the event of an error,
this EBICS message contains the corresponding technical or business related error code.
The contents of this EBICS message are described in greater detail in Chapter 5.6.1.1.3.

RCT = EBICS_DOWNLOAD_POSTPROCESS_SKIPPED
RCF = 0

„Negative“ receipt

EBICS transaction closure
(release of resources)

„Positive“ receipt

RCT = EBICS_DOWNLOAD_POSTPROCESS_DONE
RCF = 0

Sending EBICS response

Download Postprocessing

Receiving EBICS request

Download transaction verification

EBICS response creation

RCT = 0
RCF = 0

[RCT = 0 and RCF = 0]

else

Diagram 66: Processing of an EBICS request for acknowledgement within the framework of
a download transaction

5.6.2 Recovery of download transactions
Recovery of download transactions is always initiated by the customer system. The reasons
for a recovery are analogous to those of upload transactions:

 Transport error during transmission of an EBICS request in the data transfer or
acknowledgement phase of the transaction

 Timeout or transport error when receiving an EBICS transaction in the data transfer or
acknowledgement phase of the transaction

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 135
 Status: Final Version 2.4.2

 Loss at the subscriber’s end of order data segments that have already been received

 Temporary error in the processing of a received EBICS response that necessitates
renewed transmission.

If one of the above error situations occurs, the customer system selects a suitable recovery
point depending on the number of available order data segments at the subscriber’s end. If
the selected recovery point is the request for the nth order data segment, then the next
transaction step initiated by the subscriber is the request for the (n+1)th order data segment
or acknowledgement of the download of all order data segments if n is the last order data
segment. EBICS requests within the framework of the recovery of download transactions do
not differ from the EBICS request of a normal, error-free flow of a download transaction.

By way of example, the flow of a transaction that repeatedly necessitates recovery is shown
in Diagram 67. In each case, the recovery takes place without explicit synchronisation
between the customer system and the bank system. The 3rd order data segment is requested
three times since the customer system could not receive the corresponding EBICS response
due to a timeout or a transport error. On the second and third request of the 3rd order data
segment, the customer system assumes that the recovery point is the request for the 2nd
order data segment. The value of the recovery counter is equal to 2 after the third (and
successful) request of the 3rd order data segment, since the last two requests of the 3rd order
data segment were evaluated as recovery attempts by the bank system. The transaction
finally fails due to the number of recovery attempts being too high.

If the selected recovery point is not valid from the viewpoint of the bank system, the EBICS
response contains the last possible recovery point of the download transaction in addition to
the technical return code EBICS_TX_RECOVERY_SYNC. The valid recovery points of a
download transaction are defined in Chapter 5.4. If, for example, the selected recovery point
is the request for the order data segment with serial number k, the transaction can be
continued with the request for the order data segments with serial numbers I+1, I+2, wherein
i <= k must hold. If i < k, the ith order data segment is requested again, then the counter for
the number of implemented recovery attempts is incremented by one.

Diagram 68 shows the successful flow of a transaction that contains a recovery of the
transaction after an explicit synchronisation between the customer system and the bank
system. Here, the customer system requests the 5th order data segment in one state without
having previously requested the 4th order data segment. The financial institution’s EBICS
response (see Diagram 69) thus contains the recovery point of the transaction, which in this
case is the request of the 3rd order data segment. Following this, the customer system
continues with the request of the 4th order data segment and ends the transaction after
receipt of the last segment 5.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 136
 Status: Final Version 2.4.2

Transport layer

ok, transfer of data segment 2

Customer system Bank system

transfer request for data segment 2 for transaction xxx

transfer request for data segment 3 for transaction xxx

Transmission failure, timeout

1. transfer request retry for data segment 3 for transaction xxx

transaction initialisation

ok, unique transaction ID = xxx, transfer of data segment 1

Transmission failure, Timeout

2. transfer request retry for data segment 3 for transaction xxx

ok, transfer of data segment 3

RecoveryCounter == 0,
recovery points:

initialisation

RecoveryCounter == 0,
recovery points:

initialisation,
transfer/ segment 2

RecoveryCounter == 1,
recovery points:

initialisation,
transfer/ segment 2

RecoveryCounter == 2 ==MAX ,
recovery points:

initialisation,
transfer/ segment 2
transfer/ segment 3

transfer request for data segment 4 for transaction xxx

Transmission failure, Timeout

1. transfer request retry for data segment 4 for transaction xxx

system-related error return code: EBICS_TX_ABORT

RecoveryCounter == 2 == MAX,
recovery points:

initialisation,
transfer/ segment 2,
transfer/ segment 3

RecoveryCounter == 0,
recovery points:

initialisation,
transfer/ segment 2

Diagram 67: Termination of the recovery of a download transaction due to the maximum
number of recovery attempts being exceeded

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 137
 Status: Final Version 2.4.2

ok, transfer of data segment 3

Customer system Bank system

transfer request for data segment 3 for transaction xxx

transfer request for data segment 5 (> 4) for transaction xxx

transfer request for data segment 4 for transaction xxx

transaction initialisation

ok, unique transaction ID = xxx, transfer of data segment 1

system-related return code: EBICS_TX_RECOVERY_SYNC,
recovery point: transfer/ data segment 3

ok, transfer pf data segment 4

ok, transfer of data segment 2

transfer request for data segment 2 for transaction xxx

transfer request for data segment 5 for transaction xxx

ok

Transport layer

RecoveryCounter == 0,
recovery points:

initialisation

RecoveryCounter == 0,
recovery points:

initialisation,
transfer/ segment 2

RecoveryCounter == 1,
recovery points:

initialisation,
transfer/ segment 2,
transfer/ segment 3

RecoveryCounter == 0,
recovery points:

initialisation,
transfer/ segment 2,
transfer/ segment 3

RecoveryCounter == 1,
recovery points:

initialisation,
transfer/ segment 2,
transfer/ segment 3,
transfer/ segment 4

RecoveryCounter == 1,
recovery points:

initialisation,
transfer/ segment 2,
transfer/ segment 3,
transfer/ segment 4,
transfer/ segment 5

transfer of data segment 5 for transaction xxx

ok

receipt for transaction xxx (acknowledgement)

Diagram 68: Recovery of a download transaction with explicit synchronisation between
customer system and bank system

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 138
 Status: Final Version 2.4.2

<?xml version="1.0" encoding="UTF-8"?>
<ebicsResponse
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_response.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static> <TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>
 </static>
 <mutable>
 <TransactionPhase>Transfer</TransactionPhase>
 <SegmentNumber>3</SegmentNumber>
 <ReturnCode>061101</ReturnCode>
 <ReportText>[EBICS_TX_RECOVERY_SYNC] Synchronisation necessary</ReportText>
 </mutable>
 </header>
 <AuthSignature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256">
 </ds:SignatureMethod>
 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <ds:DigestValue>… here hashvalue for authentication …</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>… here authentication signature …</ds:SignatureValue>
 </AuthSignature>
 <body>
 <ReturnCode authenticate="true">000000</ReturnCode>
 </body>
</ebicsResponse>

Diagram 69: EBICS response with technical error EBICS_TX_RECOVERY_SYNC

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 139
 Status: Final Version 2.4.2

6 Encryption
EBICS provides encryption on two different protocol levels: On the level of the EBICS XML-
based application protocol and on a level between the application and transport level, namely
the TLS level.

6.1 Encryption at TLS level
The use of TLS on the external transmission paths between the customer system and the
bank system ensures maintenance of the confidentiality and integrity of the EBICS messages
on these paths. The cryptographic processes that are used to establish a TLS session
between the customer system and the bank system are described in the Appendix (Chapter
11.3.1).

6.2 Encryption at application level
The order data of bank-technical orders are fundamentally deemed to be sensitive and are
therefore embedded into EBICS messages in encrypted form. This facilitates maintenance of
their confidentiality on the internal paths of the customer system and the bank system on
which communication is not necessarily based on TLS.

The order data of system-related key management orders is encrypted as soon as the
recipient’s (sufficiently verified) encryption key is available to the sender of the order data.
The order data of INI, HIA or HSA orders is thus embedded into the EBICS message in an
unencrypted form, but the order data of HPB, PUB, HCS, or HCA orders is encrypted.

The order data of system-related Distributed Electronic Signature orders is also embedded in
the EBICS message in encrypted form.

Analogous to the order data of bank-technical orders, the electronic signatures of an order,
i.e. the transport signature or the bank-technical ES’s are always encrypted.

Apart from the order data and the ES’s, no further data is encrypted at the application level.

Order data that is to be encrypted and ES’s of an order are initially compressed via ZIP, then
encrypted and finally base64-coded and embedded in the EBICS message. Here,
compression and subsequent encryption of the order data takes place before it is
segmented. The implemented encryption process is a hybrid process: The data is
symmetrically encrypted, the utilised symmetrical key is passed to the recipient of the data in
asymmetrically-encrypted form. Details on the encryption process are given in the Appendix
(Chapter 11.3.2).

In the event of an upload transaction, a random symmetrical key is generated in the
customer system that is used exclusively within the framework of this transaction both for
encryption of the ES’s and for encryption of the order data. This key is encrypted

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 140
 Status: Final Version 2.4.2

asymmetrically with the financial institution’s public encryption key and is transmitted by the
customer system to the bank system during the initialisation phase of the transaction.

Analogously, in the case of a download transaction a random symmetrical key is generated
in the bank system that is used for encryption of the order data that is to be downloaded and
for encryption of the bank-technical signature that has been provided by the financial
institution. This key is asymmetrically encrypted and is transmitted by the bank system to the
customer system during the initialisation phase of the transaction. The asymmetrical
encryption takes place with the technical subscriber’s public encryption key if the
transaction’s EBICS messages are sent by a technical subscriber. Otherwise the
asymmetrical encryption takes place with the public encryption key of the non-technical
subscriber, i.e. the submitter of the order.

From EBICS 2.4 on, the customer system has to use the E002-hash value of the public bank
key in a request. This hash value is generated by the customer system according to the
E002 process by means of SHA-256.
The transaction is cancelled and the return code EBICS_INVALID_REQUEST_CONTENT is
returned if E001 is still used in a request.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 141
 Status: Final Version 2.4.2

7 Segmentation of the order data

7.1 Process description
In Version H003 of the EBICS standard, order data that requires more than 1 MB of storage
space in compressed, encrypted and base64-coded form MUST be segmented before
transmission, irrespective of the transfer direction (upload/download).

The following procedure is to be followed with segmentation:

1. The order data is ZIP compressed

2. The compressed order data is encrypted in accordance with Chapter 6.2

3. The compressed, encrypted order data is base64-coded.
In doing this, only the 65 printable characters of the base64 alphabet from
RFC 2045 are permitted in EBICS in the resulting coded data block. In
particular, so-called “white-space characters” such as spaces, tabs, carriage
returns and line feeds (“CR/LF”) are not permitted

4. The result is to be verified with regard to the data volume:
4i. If the resulting data volume is below the threshold of 1 MB = 1,048,576 bytes,

the order data can be sent complete as a data segment within one
transmission step

4ii. If the resulting data volume exceeds 1,048,576 bytes the data is to be
separated sequentially and in a base64-conformant manner into segments
that each have a maximum of 1,048,576 bytes.

Step 4i ensures that even order data that does not exceed the permitted maximum segment
size of 1 MB when in compressed, encrypted and coded form is handled uniformly within the
framework of segmentation.

The recipient executes the algorithmic computations in reverse order to recovere the original
order data:

1. The data segment that has just been received is appended (concatenated) to
the already-received data segments

2. The complete data block is base64-decoded

3. The results of the base64-decoding are decrypted in accordance with Chapter
6.2

4. The results of the decryption are ZIP expanded to reveal the original order
data.

7.2 Implementation in the EBICS messages
The sender of the order data numbers the data segments that are generated in accordance
with Chapter 7.1 sequentially in ascending order, beginning with 1.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 142
 Status: Final Version 2.4.2

The server terminates the connection with the technical error code
EBICS_TX_SEGMENT_NUMBER_EXCEEDED if the client in an upload transaction has
specified the total number of segments that are to be transmitted, as stated in the
initialisation phase, too low in the field ebics/header/static/NumSegments, i.e. if the
following applies to the current transaction step:

 ebicsRequest/header/mutable/SegmentNumber =
ebicsRequest/header/static/NumSegments (from the initialisation phase) and
ebicsRequest/header/mutable/SegmentNumber@lastSegment≠"true", or

 ebicsRequest/header/mutable/SegmentNumber >
ebicsRequest/header/static/NumSegments (from the initialisation phase).

The server terminates the transaction in a regular manner with the technical return code of
severity level ‘info’ EBICS_TX_SEGMENT_NUMBER_UNDERRUN if the client in an upload
transaction has specified the total number of segments that are to be transmitted, as stated
in the initialisation phase, too high in the field
ebicsRequest/header/static/NumSegments, i.e. if the following applies to the current
transaction step:

 ebicsRequest/header/mutable/SegmentNumber <
ebicsRequest/header/static/NumSegments (from the initialisation phase) and
ebicsRequest/header/mutable/SegmentNumber@lastSegment="true".

The server terminates the transaction with the technical error code
EBICS_SEGMENT_SIZE_EXCEEDED if the client in an upload transaction has exceeded
the permitted segment size of 1 MB in the current transaction step.

In the case of download transactions, it is the responsibility of the customer system to
respond to irregularities regarding the number or size of segments:

 If the actual number of transmitted segments up until attribute setting
ebicsRequest/header/mutable/SegmentNumber@lastSegment="true" is
lower than the specification in the initialisation stage on the part of the server, the client
SHOULD nevertheless duly continue the current transaction with the acknowledgement
phase.

 If the server exceeds the total number of segments postulated in the initialisation phase,
the client CAN nevertheless continue the transaction by requesting further segments.
Alternatively, or in the event of a disproportionately-large deviation between the actual
segment number and the specified number, the client CAN interrupt the transaction by
sending no further requests.

 If the server exceeds the permitted segment size of 1 MB, the client SHOULD terminate
the transaction.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 143
 Status: Final Version 2.4.2

8 Distributed Electronic Signature (VEU)
Support by the bank for the Distributed Electronic Signature is compulsory for EBICS-
conformant implementation, i.e. all financial institutions MUST offer VEU. Information as to
whether the financial institution supports the optional VEU order type “HVT” (Retrieve VEU
transaction details) is contained in the bank parameters (see Chapter 9.2.2, Parameter
“DistribSigTransactionDetails”).
From EBICS version 2.4, only German financial institutions are mandatorily obliged to
support the order types of the Distributed Electronic Signature (VEU) .

8.1 Process description
The Distributed Electronic Signature (VEU) allows orders to be authorised by multiple
subscribers, even from different customers, independently of location and time. Here, an
order remains stored in the VEU processing system until via the VEU orders either the
necessary number of signatures with suitable authorisation have been received, a time limit
set by the bank’s computer system has been exceeded or the order is cancelled. Hence the
VEU process is not just an alternative to customer-internal subsequent submission of ES’s
relating to an existing order, it also offers a distributed ES among a number of customers
with comprehensive possibilities for information on the VEU state and the order.

Authorised signatories of a customer can use signature processes deviating from each other
which may support different hash processes resulting in different hash values. In the case of
the VEU process, the hash value of the order data is provided when the order types HVD
and HVZ are executed. This hash value is derived from the signature version which the
subscriber executing HVZ and HVD uses. The hash value is provided with the signature
version used as an attribute.

A complete VEU order process generally proceeds as follows:

1. The order party initiates the order (e.g. IZV) by transmitting the order data in
an EBICS transaction with the order attributes “OZHNN”. For the signature,
the order party can either immediately bank-technically sign the order
(signature class A, B or E) or can initially carry out the transmission by means
of a transport signature (signature class T).

2. The bank system analyses the order type and signatures that have already
been submitted, including their class. If further signatures are necessary for
processing of the order, it is stored intermediately for the VEU process
together with its hash value. The bank system extracts the hash value of the
order data from the ES using the signatory’s public signature key.

3. If another subscriber wants to use the VEU process for this order, they have
possibly already received the data necessary for authorisation – hash value of
the order, order type and order number – outside of EBICS (via a third
communication path). In this event, the process continues from Point 4. On
the other hand, if they still need the order data they can proceed as follows:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 144
 Status: Final Version 2.4.2

3i. Firstly, they inquire via order type HVU or HVZ to find out which orders they
are authorised to sign within the framework of VEU. The response contains,
among other things, information on the order type, order number, the number
of signatures required and already provided (including a note as to whether
their own signature is still required or has already been provided), on the
original order party and on the size of the uncompressed order data. The HVZ
response contains additional information, especially the hash value of the
order data. If HVZ is applied, step 3ii may be skipped.

3ii. Next they ascertain via order type HVD the state of one of these orders, e.g.
the IZV order placed within the framework of the VEU. In addition to the hash
value of the order data that the bank system has extracted from the order
signatory’s ES and an accompanying note, they receive a list of the previous
signatories together with their authorisation class.

3iii. The subscriber can download additional order details via order type HVT:
Depending on the request parameters, they receive either information on the
individual order transactions (account data, amount information, processing
date, utilisation data and other descriptions) or the complete order data.

4. The subscriber now has all information needed to sign or cancel the original
order:

4i. If they want to add a signature to the original order, they will use order type
HVE. For this, they sign the hash value of the order data received via HVD or
worked out themselves from the complete order data via HVT. The HVE
control data contains the order parameters for the original order (e.g. the IZV
order).

4ii. If they want to cancel the original order they would use order type HVS. As
with HVE, authorisation is confirmed by the bank-technical signature via the
hash value of the order data, but in the case of HVS the signature applies as
confirmation of the cancellation, not confirmation of the order itself. As with
HVE, the HVS control data contains the order parameters of the original order
(that is to be cancelled).

Diagram 70 documents the processes when using VEU. The diagram shows the logical
concatenation of the VEU order types wherein pure communications connections (e.g. data
transmission from bank system to customer system on retrieval of VEU details via HVD),
occurrences of errors and the acquisition of information via alternative communication
channels (e.g. order hash value by email from the submitter instead of via HVD) are not
shown for reasons of clarity.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 145
 Status: Final Version 2.4.2

new order

process order

Order party/
initiating party

Credit institute Signer

store incompletely
authorised order in
VEU processing list

[additional EUs
required]

[EU-authorisation
complete]

HVU

[no orders to sign]

HVD

[orders to sign]

[HVT is
supported]

[HVT is not
supported]

HVT
(complete
order data)

HVT
(order details)

[complete order
data requested]

[order details
requested]

[no signature]

HVS [cancellation] HVE
[signature of
the order]delete order from

VEU processing list

delete order from
VEU processing list

[hash value
from HVD
or HVZ]

[hash value computed
from order data]

HVZ

[no orders
to sign]

[orders
to sign]

Diagram 70: Flow diagram for VEU

8.2 Technical implementation of the VEU

 A subscriber initiates VEU processing by submitting an order with an insufficient number

of bank-technical signatures of the necessary authorisation class. The order is submitted
in an EBICS transaction with order attributes “OZHNN”. In all cases, this order must be
submitted with a signature (either with a bank-technical signature of class “A”, “B” or “E”,
or with a transport signature of signature class “T”).

 The bank system first verifies the supplied ES(s) and the authorisation of the subscribers
for the order type in question. It then compares the number and signature class of the
supplied ES(s) with the locally-deposited ES requirements for the order type in question.
If signatures are still outstanding, the order is placed in VEU processing together with the
ES’s that have already been provided.

 Information on orders that are currently in VEU processing can be retrieved via VEU
order types “HVU” , “HVZ”, “HVD” and “HVT”. Necessary parameters to demarcate the
original orders are transmitted via the additional order parameters HVUOrderParams,
HVZOrderParams, HVDOrderParams or HVTOrderParams, which are part of the
control data for these order types. “HVU”, , “HVZ” “HVD” and “HVT” are download

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 146
 Status: Final Version 2.4.2

transactions wherein the reply information is transparently embedded into the order data
field in the form of XML documents. “Transparent” means: The XML structures are
interpreted in binary and are compressed, encoded and coded before transmission just
like the order data of other order types.

 In the case of order types HVE/HVS, a subscriber can retrieve the necessary data for
identification of the original order (hash value of the order, order type, order number) in
the following ways:

- HVU & HVD: With HVU, they retrieve the order type and order number, with HVD
the hash value of the order. Here, the hash value originates from the ES of the
subscriber that submitted the order.

- HVZ as an alternative of HVU & HVD: With HVZ, the subscriber retrieves the order
type and order number as well as the hash value of the order. The hash value
originates from the submitter's ES of the order.

- HVU & HVT: With HVU, the subscriber retrieves the order type and order number as
in the case of „HVU & HVD". With HVT, they can set the switch
completeOrderData="true" in the request (HVTOrderParams) and thus
receive the complete order file. They can work out the hash value themselves from
this.

- HVZ & HVT: With HVZ, the subscriber retrieves the order type and order number as
well as the hash value of the order as described above. HVT allows him to set the
switch completeOrderData="true" with the request (HVTOrderParams), thus
giving him the opportunity to obtain the complete order file.

- Via an alternative communication channel: The subscriber is at liberty to acquire the
information without the help of the EBICS interface. If they already know the order
type and the order number, they can dispense with retrieval via HVU. If they also
have the correct hash value for the order, retrieval via HVD, HVT or HVZ
respectively can also be dispensed with.

 New ES’s can be assigned to the order via the VEU order type HVE. Here, identification
of the original order takes place via the additional order parameters HVEOrderParams,
which are components of the control data for an HVE order. The ES that is to be supplied
for the order data of the original order is transmitted during the initialisation step. HVE
contains one or more ES(s) but no order data, and is hence to be marked with the order
attribute “UZHNN”.

 As soon as the required number of ES’s with suitable authorisation has been submitted
for the order type in question, the original order is released from VEU processing and
forwarded for further order processing. In this way, the order no longer appears in the
return list of orders to be signed when “HVU” (or HVZ) is next implemented.

 VEU cancellation can be initiated via order type HVS. As with HVE, identification of the
original order takes place via the additional order parameters (here HVSOrderParams),
which are components of the control data for an HVS order. As with HVE, the authorising
ES for the cancellation via order data of the original order is transmitted in the
initialisation step. HVS also contains one or more ES(s) but no order data, and is hence
to be marked with the order attribute “UZHNN”.
An order cancellation is effective immediately, and always requires one single authorised
signature of class “E”, “A” or “B”. A cancelled order is removed from the VEU processing;

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 147
 Status: Final Version 2.4.2

it is not forwarded for further order processing. Furthermore, it is no longer contained in
the list of orders to be signed in the event of a repeated release of “HVU” (or HVZ).

8.3 Detailed description of the VEU order types
This chapter will exclusively cover the differences and additions in comparison with EBICS
standard orders (see Chapter 5). No more process flows will be explained (see Chapter 8.1
and 8.2), instead syntax and semantics for each individual VEU order type (request and
response) will be defined for the relevant elements and attributes of the XML schema, and
these will be explained by way of examples.

Definition of the VEU order elements (VEU order parameters and VEU order data) is given in
the XML schema “ebics_orders.xsd”. Type definitions are given, in part, in the XML schema
“ebics_types.xsd”. With the textual representations, the relevant passages from
“ebics_orders.xsd” and “ebics_types.xsd” are listed in summary.

8.3.1 HVU (download VEU overview) and HVZ (Download VEU overview with
additional information) [mandatory]

A subscriber can use HVU to list the orders for which they are authorised as a signatory. As
a filter criterion, they can restrict the list in “request” to specific order types (OrderTypes). In
addition to the order designation, the “response” also contains the size of the order data,
signature conditions and information on the initiating party and the previous signatories
(OrderDetails).

Apart from all information of HVU the response message of the order type HVZ also contains
data of HVD. Therefore, the order type HVZ ("Download VEU overview with additional
information") may be compared to a combination of HVU with 1 to n HVDs.

HVU and HVZ are order types of the type “download”.

8.3.1.1 HVU request
In the HVU request, the subscriber optionally submits a list of order types as a filter criterion.
Only orders whose order type is contained in the submitted list are returned. If the subscriber
does not submit an order type list as a restriction, they will receive a list of all order types for
which they are authorised as a signatory.

Characteristics of OrderParams (order parameters) for HVU: HVUOrderParams

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 148
 Status: Final Version 2.4.2

8.3.1.1.1 XML schema (graphical representation)

Diagram 71: HVUOrderParams

8.3.1.1.2 XML schema (textual representation)

<element name="HVUOrderParams" type="ebics:HVUOrderParamsType"
substitutionGroup="ebics:OrderParams">
 <annotation>
 <documentation xml:lang="en">additional order parameters for order type
HVU.</documentation>
 </annotation>
 </element>
<complexType name="HVUOrderParamsType">
 <annotation>
 <documentation xml:lang="en">Data type for additional order parameters regarding order
type HVU.</documentation>
 </annotation>
 <sequence>
 <element name="OrderTypes" type="ebics:OrderTListType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">List of order types that the orders ready to be signed
by the requesting user should match; if not specified, a list of all orders ready to be signed
by the requesting user is returned.</documentation>
 </annotation>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

8.3.1.1.3 Meaning of the XML elements/attributes

XML element/

attribute
Data type # Meaning Example

HVUOrderParams ebics:HVUOrderParamsType
(complex)

1 Order parameters for
order type HVU

-
(complex)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 149
 Status: Final Version 2.4.2

OrderTypes ebics:OrderTListType
(list<ebics:OrderTBaseType>
list<token, length=3,

pattern="[A-Z0-9]{3}">)

0..1 List of order types for
which orders available
for signature are to be
retrieved; if not
specified, all orders are
retrieved for which the
subscriber is authorised
as a signatory

“IZV”

8.3.1.1.4 Example XML (abridged)
<?xml version="1.0" encoding="UTF-8"?>
<ebicsRequest
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_request.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <!-- […] -->
 <OrderDetails>
 <OrderType>HVU</OrderType>
 <OrderAttribute>DZNNN</OrderAttribute>
 <HVUOrderParams>
 <OrderTypes>IZV</OrderTypes>
 </HVUOrderParams>
 </OrderDetails>
 <!-- […] -->
 </static>
 <!-- […] -->
 </header>
 <!-- […] -->
</ebicsRequest>

8.3.1.2 HVU response
In the HVU response, the subscriber is given information as to the orders for which they are
authorised as signatories.

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for
HVU: HVUResponseOrderData

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 150
 Status: Final Version 2.4.2

8.3.1.2.1 XML schema (graphic representation)

Diagram 72: HVUResponseOrderData

Diagram 73: HVUSigningInfoType (to SigningInfo)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 151
 Status: Final Version 2.4.2

Diagram 74: SignerInfoType (to SignerInfo)

Diagram 75: HVUOriginatorInfoType (to OriginatorInfo)

8.3.1.2.2 XML schema (textual representation)

 <element name="HVUResponseOrderData" type="ebics:HVUResponseOrderDataType"
substitutionGroup="ebics:EBICSOrderData">

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 152
 Status: Final Version 2.4.2

 <annotation>
 <documentation xml:lang="en">Order data for order type HVU (response: receive summary of
orders currently stored in the distributed signature processing unit).</documentation>
 </annotation>
 </element>
 <complexType name="HVUResponseOrderDataType">
 <annotation>
 <documentation xml:lang="en">Data type for order data regarding order type HVU (response:
receive summary of orders currently stored in the distributed signature processing
unit).</documentation>
 </annotation>
 <sequence>
 <annotation>
 <documentation xml:lang="de"/>
 </annotation>
 <element name="OrderDetails" type="ebics:HVUOrderDetailsType" maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">Summary of order information.</documentation>
 </annotation>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <complexType name="HVUOrderDetailsType">
 <annotation>
 <documentation xml:lang="en">Data type for order details regarding order type
HVU.</documentation>
 </annotation>
 <sequence>
 <element name="OrderType" type="ebics:OrderTBaseType">
 <annotation>
 <documentation xml:lang="en">Type of the order.</documentation>
 </annotation>
 </element>
 <element name="OrderID" type="ebics:OrderIDType">
 <annotation>
 <documentation xml:lang="en">ID number of the order.</documentation>
 </annotation>
 </element>
 <element name="OrderDataSize" type="positiveInteger">
 <annotation>
 <documentation xml:lang="en">Size in bytes of the order in uncompressed
form.</documentation>
 </annotation>
 </element>
 <element name="SigningInfo" type="ebics:HVUSigningInfoType">
 <annotation>
 <documentation xml:lang="en">Information regarding the signing modalities of the
order.</documentation>
 </annotation>
 </element>
 <element name="SignerInfo" type="ebics:SignerInfoType" minOccurs="0"
maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">Information regarding the users who already signed the
order.</documentation>
 </annotation>
 </element>
 <element name="OriginatorInfo" type="ebics:HVUOriginatorInfoType">
 <annotation>
 <documentation xml:lang="en">Information regarding the originator of the
order.</documentation>
 </annotation>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 153
 Status: Final Version 2.4.2

 </sequence>
 </complexType>
 <complexType name="HVUSigningInfoType">
 <annotation>
 <documentation xml:lang="en">Data type for information regarding the signing modalities
of orders returned by HVU.</documentation>
 </annotation>
 <attribute name="readyToBeSigned" type="boolean" use="required">
 <annotation>
 <documentation xml:lang="en">Is this order ready to be signed, or has it been signed by
the requesting user already?</documentation>
 </annotation>
 </attribute>
 <attribute name="NumSigRequired" type="positiveInteger" use="required">
 <annotation>
 <documentation xml:lang="en">Minimum number of signatures required for authorisation of
the order.</documentation>
 </annotation>
 </attribute>
 <attribute name="NumSigDone" type="nonNegativeInteger" use="required">
 <annotation>
 <documentation xml:lang="en">Number of signatures already issued for this
order.</documentation>
 </annotation>
 </attribute>
 </complexType>
 <complexType name="SignerInfoType">
 <annotation>
 <documentation xml:lang="en">Data type for information regarding a signer of an order
which is listed by HVU/HVD.</documentation>
 </annotation>
 <sequence>
 <element name="PartnerID" type="ebics:PartnerIDType">
 <annotation>
 <documentation xml:lang="en">Signer's customer ID.</documentation>
 </annotation>
 </element>
 <element name="UserID" type="ebics:UserIDType">
 <annotation>
 <documentation xml:lang="en">Signer's user ID.</documentation>
 </annotation>
 </element>
 <element name="Name" type="ebics:NameType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Signer's name.</documentation>
 </annotation>
 </element>
 <element name="Timestamp" type="ebics:TimestampType">
 <annotation>
 <documentation xml:lang="en">Timestamp of the signature (i.e., the transmission of
the signature).</documentation>
 </annotation>
 </element>
 <element name="Permission">
 <annotation>
 <documentation xml:lang="en">additional information regarding the signature
permissions of a user who signed the order.</documentation>
 </annotation>
 <complexType>
 <attributeGroup ref="ebics:SignerPermission"/>
 </complexType>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 154
 Status: Final Version 2.4.2

 </complexType>
 <complexType name="HVUOriginatorInfoType">
 <annotation>
 <documentation xml:lang="en">Data type for information regarding the originator of an
order returned by HVU.</documentation>
 </annotation>
 <sequence>
 <element name="PartnerID" type="ebics:PartnerIDType">
 <annotation>
 <documentation xml:lang="en">Customer ID of the originator.</documentation>
 </annotation>
 </element>
 <element name="UserID" type="ebics:UserIDType">
 <annotation>
 <documentation xml:lang="en">User ID of the originator.</documentation>
 </annotation>
 </element>
 <element name="Name" type="ebics:NameType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Name of the originator.</documentation>
 </annotation>
 </element>
 <element name="Timestamp" type="ebics:TimestampType">
 <annotation>
 <documentation xml:lang="en">Timestamp of the submission of the order (i.e., the
transmission of the order data).</documentation>
 </annotation>
 </element>
 <any namespace="##targetNamespace" processContents="strict" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <attributeGroup name="SignerPermission">
 <annotation>
 <documentation xml:lang="en">permission information of a user's digital
signature.</documentation>
 </annotation>
 <attribute name="AuthorisationLevel" type="ebics:AuthorisationLevelType" use="required">
 <annotation>
 <documentation xml:lang="en">Authorisation level of the user who signed the
order.</documentation>
 </annotation>
 </attribute>
 <anyAttribute namespace="##targetNamespace" processContents="strict"/>
 </attributeGroup>

8.3.1.2.3 Meaning of the XML elements/attributes

XML element/

attribute
Data type # Meaning Example

HVUResponse»
OrderData

ebics:HVUResponse»
OrderDataType
(complex)

1 XML order data for order
type HVU

- (complex)

OrderDetails ebics:HVUOrder»
DetailsType (complex)

1..∞ Order information for
order type HVU

- (complex)

OrderType ebics:OrderTBaseType
(token, length=3,
pattern="[A-Z0-
9]{3}")

1 Order type of the order
submitted for VEU

“IZV”

OrderID ebics:OrderIDType 1 Order number of the “OR01”

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 155
 Status: Final Version 2.4.2

(token,
fixLength=4)

order submitted for VEU

OrderDataSize positiveInteger 1 Size of the
uncompressed order
data of the order
submitted for VEU in
bytes

123456

SigningInfo ebics:HVUSigning»
InfoType (complex)

1 Information on the
signature modalities

- (complex)

SigningInfo»
@readyToBeSigned

boolean 1 Is the order ready for
signature (true) or
already signed by the
subscriber (false)?

“true”

SigningInfo»
@NumSigRequired

positiveInteger 1 Total number of ES’s
required for activation

4

SigningInfo»
@numSigDone

nonNegativeInteger 1 Number of ES’s already
provided

2

SignerInfo ebics:SignerInfo»
Type (complex)

0..∞ Information on previous
signatories

- (complex)

PartnerID (in
SignerInfo)

ebics:PartnerIDType
(token,
maxLength=35,
pattern="[a-zA-Z0-
9,=]{1,35})

1 Customer ID of the
signatory

“CUSTM001”

UserID (in
SignerInfo)

ebics:UserIDType
(token,
maxLength=35,
pattern="[a-zA-Z0-
9,=]{1,35})

1 Subscriber ID of the
signatory

“USR100“

Name (in SignerInfo) ebics:NameType
(normalizedString)

0..1 Signatory’s name “John Doe“

Timestamp (in
SignerInfo)

ebics:TimestampType
(dateTime)

1 Time stamp of the
signature (i.e.
transmission of the
signature)

“2005-01-31T»
16:30:45.123Z“

Permission - (complex)

1 Additional authorisation
information relating to the
subscriber that acted as
signatory

- (complex)

Permission»
@Authorisation»
Level

ebics:Authorisation»
LevelType
(token, length=1:
"E", "A", "B", "T")

1 Signature authorisation
of the subscriber that
acted as signatory

“A“

OriginatorInfo ebics:HVUOriginator»
InfoType (complex)

1 Information on the
initiating party

- (complex)

PartnerID (in
OriginatorInfo)

ebics:PartnerIDType
(token,
maxLength=35,
pattern="[a-zA-Z0-
9,=]{1,35})

1 Customer ID of the
initiating party

“CUSTM001”

UserID (in
OriginatorInfo)

ebics:UserIDType
(token,
maxLength=35,
pattern="[a-zA-Z0-

1 Subscriber ID of the
initiating party

“USR300“

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 156
 Status: Final Version 2.4.2

9,=]{1,35})

Name (in
OriginatorInfo)

ebics:NameType
(normalizedString)

0..1 Name of the initiating
party

“Ophelia
Originator“

Timestamp (in
OriginatorInfo)

ebics:TimestampType
(dateTime)

1 Time stamp of the
submission (i.e. trans-
mission of the order file)

“2005-01-30T»
15:30:45.123Z“

8.3.1.2.4 Example XML
<?xml version="1.0" encoding="UTF-8"?>
<HVUResponseOrderData
 xmlns="http://www.ebics.org/H003"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_orders.xsd">
 <OrderDetails>
 <OrderType>IZV</OrderType>
 <OrderID>OR01</OrderID>
 <OrderDataSize>123456</OrderDataSize>
 <SigningInfo NumSigRequired="4" readyToBeSigned="true" NumSigDone="2"/>
 <SignerInfo>
 <PartnerID>CUSTM001</PartnerID>
 <UserID>USR100</UserID>
 <Name>John Doe</Name>
 <Timestamp>2005-01-31T16:30:45.123Z</Timestamp>
 <Permission AuthorisationLevel="A"/>
 </SignerInfo>
 <SignerInfo>
 <PartnerID>CUSTM002</PartnerID>
 <UserID>USR200</UserID>
 <Name>Jackie Smith</Name>
 <Timestamp>2005-01-31T17:30:45.123Z</Timestamp>
 <Permission AuthorisationLevel="B"/>
 </SignerInfo>
 <OriginatorInfo>
 <PartnerID>CUSTM001</PartnerID>
 <UserID>USR300</UserID>
 <Name>Ophelia Originator</Name>
 <Timestamp>2005-01-30T15:30:45.123Z</Timestamp>
 </OriginatorInfo>
 </OrderDetails>
</HVUResponseOrderData>

8.3.1.3 HVZ request
In the HVZ request, the subscriber optionally submits a list of order types as a filter criterion.
Only orders whose order type is contained in the submitted list are returned. If the subscriber
does not submit an order type list as a restriction, they will receive a list of all order types for
which they are authorised as a signatory.

Characteristics of OrderParams (order parameters) for HVZ: HVUOrderParams

8.3.1.3.1 XML schema (graphical representation)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 157
 Status: Final Version 2.4.2

Diagram 76: HVZOrderParams

8.3.1.3.2 XML schema (textual representation)

<element name="HVZOrderParams" type="ebics:HVZOrderParamsType"
substitutionGroup="ebics:OrderParams">
 <annotation>
 <documentation xml:lang="en">additional order parameters for order type
HVZ.</documentation>
 </annotation>
 </element>
<complexType name="HVZOrderParamsType">
 <annotation>
 <documentation xml:lang="en">Data type for additional order parameters regarding order
type HVZ.</documentation>
 </annotation>
 <sequence>
 <element name="OrderTypes" type="ebics:OrderTListType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">List of order types that the orders ready to be signed
by the requesting user should match; if not specified, a list of all orders ready to be signed
by the requesting user is returned.</documentation>
 </annotation>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

8.3.1.3.3 Meaning of the XML elements/attributes

XML element/

attribute
Data type # Meaning Example

HVZOrderParams ebics:HVZOrderParamsType
(complex)

1 Order parameters for
order type HVZ

-
(complex)

OrderTypes ebics:OrderTListType
(list<ebics:OrderTBaseType>
list<token, length=3,

pattern="[A-Z0-9]{3}">)

0..1 List of order types for
which orders available
for signature are to be
retrieved; if not
specified, all orders are
retrieved for which the
subscriber is authorised
as a signatory

“IZV”

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 158
 Status: Final Version 2.4.2

8.3.1.3.4 Example XML (abridged)
<?xml version="1.0" encoding="UTF-8"?>
<ebicsRequest
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_request.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <!-- […] -->
 <OrderDetails>
 <OrderType>HVZ</OrderType>
 <OrderAttribute>DZNNN</OrderAttribute>
 <HVZOrderParams>
 <OrderTypes>IZV</OrderTypes>
 </HVZOrderParams>
 </OrderDetails>
 <!-- […] -->
 </static>
 <!-- […] -->
 </header>
 <!-- […] -->
</ebicsRequest>

8.3.1.4 HVZ response
In the HVZ response, the subscriber is given information as to the orders for which they are
authorised as signatories.

HVZResponseOrderData contains the complete information of HVUResponseOrderData and
HVDResponseOrderData with the exception of the element "DisplayFile" containing the file
display. As with HVD, the order's hash value is extracted from the ES of the first signatory of
the order and is recalculated if the subscriber executing HVZ uses a different signature
process. In order to make this evident, the hash value is provided with an attribute containing
the signature process used.
Only for payment orders additional information of the file display is returned if available:

• total transaction amount for all logical files
• total transaction number for all logical files
• currency (only if identical across all transactions, skip otherwise)

For DTAUS/DTAZV: Ordering party, account number / IBAN and bank code / BIC of the first
transaction of the first logical file
Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for
HVZ: HVZResponseOrderData

8.3.1.4.1 XML-Schema (graphic representation)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 159
 Status: Final Version 2.4.2

Diagram 77: HVZResponseOrderData

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 160
 Status: Final Version 2.4.2

Diagram 78 HVZPaymentOrderDetailsStructure

8.3.1.4.2 XML schema (textual representation)

 <element name="HVZResponseOrderData" type="ebics:HVZResponseOrderDataType"
substitutionGroup="ebics:EBICSOrderData">
 <annotation>
 <documentation xml:lang="en">Order data for order type HVZ (response: receive summary of
orders with additional informations currently stored in the distributed signature processing
unit).</documentation>
 </annotation>
 </element>
 <complexType name="HVZResponseOrderDataType">
 <annotation>
 <documentation xml:lang="en">Data type for order data regarding order type HVZ (response:
receive summary of orders with additional informations currently stored in the distributed
signature processing unit).</documentation>
 </annotation>
 <sequence>
 <annotation>
 <documentation xml:lang="en"/>
 </annotation>
 <element name="OrderDetails" type="ebics:HVZOrderDetailsType" maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">Summary of order information.</documentation>
 </annotation>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 161
 Status: Final Version 2.4.2

 <complexType name="HVZOrderDetailsType">
 <annotation>
 <documentation xml:lang="en">Data type for order details regarding order type
HVZ.</documentation>
 </annotation>
 <sequence>
 <element name="OrderType" type="ebics:OrderTBaseType">
 <annotation>
 <documentation xml:lang="en">Type of the order.</documentation>
 </annotation>
 </element>
 <element name="OrderID" type="ebics:OrderIDType">
 <annotation>
 <documentation xml:lang="en">ID number of the order.</documentation>
 </annotation>
 </element>
 <element name="DataDigest" type="ebics:DigestType">
 <annotation>
 <documentation xml:lang="en">
 Hash value of the order data.
 </documentation>
 </annotation>
 </element>
 <element name="OrderDataAvailable" type="boolean">
 <annotation>
 <documentation xml:lang="en">
 Can the order file be downloaded in the original format? (HVT with
completeOrderData=true).
 </documentation>
 </annotation>
 </element>
 <element name="OrderDataSize" type="positiveInteger">
 <annotation>
 <documentation xml:lang="de">
 Size of the uncompressed order data (byte count).
 </documentation>
 </annotation>
 </element>
 <element name="OrderDetailsAvailable" type="boolean">
 <annotation>
 <documentation xml:lang="en">
 Can the order details be downloaded as XML document HVTResponseOrderData? (HVT
with completeOrderData=false).
 </documentation>
 </annotation>
 </element>
 <group ref="ebics:HVZPaymentOrderDetailsStructure"
 minOccurs="0">
 <annotation>
 <documentation xml:lang="en">
 Order details related to payment orders only.
 </documentation>
 </annotation>
 </group>
 <element name="SigningInfo" type="ebics:HVUSigningInfoType">
 <annotation>
 <documentation xml:lang="en">
 Information regarding the signing modalities of the order.
 </documentation>
 </annotation>
 </element>
 <element name="SignerInfo" type="ebics:SignerInfoType"
 minOccurs="0" maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">
 Information about the already existing signers.
 </documentation>
 </annotation>
 </element>
 <element name="OriginatorInfo"
 type="ebics:HVUOriginatorInfoType">
 <annotation>
 <documentation xml:lang="en">
 Information regarding the originator of the order.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 162
 Status: Final Version 2.4.2

 </documentation>
 </annotation>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
</complexType>
<group name="HVZPaymentOrderDetailsStructure">
 <annotation>
 <documentation xml:lang="de">
 Struktur mit zusätzlichen Auftragsdetails in
 HVZResponseOrderData für Zahlungsaufträge.
 </documentation>
 <documentation xml:lang="en">
 Structure with additional order details in HVZResponseOrderData
 related to payment orders.
 </documentation>
 </annotation>
 <sequence>
 <element name="TotalOrders" type="nonNegativeInteger"
 minOccurs="0">
 <annotation>
 <documentation xml:lang="de">
 Anzahl der Zahlungssätze über alle logischen Dateien
 entsprechend Dateianzeige.
 </documentation>
 <documentation xml:lang="en">
 Total transaction number for all logical files (from
 dispay file).
 </documentation>
 </annotation>
 </element>
 <element name="TotalAmount" minOccurs="0">
 <annotation>
 <documentation xml:lang="de">
 Summe der Beträge über alle logische Dateien entsprechend
 Dateianzeige.
 </documentation>
 <documentation xml:lang="en">
 Total transaction amount for all logical files (from
 display file).
 </documentation>
 </annotation>
 <simpleType>
 <restriction base="ebics:AmountValueType" />
 </simpleType>
 </element>
 <element name="Currency" type="ebics:CurrencyBaseType"
 minOccurs="0">
 <annotation>
 <documentation xml:lang="de">
 Auftragswährung (nur bei sortenreinen Zahlungen, sonst
 keine Angabe).
 </documentation>
 <documentation xml:lang="en">
 Order currency (only if identical across all
 transactions, skip otherwise).
 </documentation>
 </annotation>
 </element>
 <element name="FirstOrderInfo" minOccurs="0">
 <annotation>
 <documentation xml:lang="de">
 Informationen aus Dateianzeige der ersten logischen
 Datei.
 </documentation>
 <documentation xml:lang="en">
 Order details from display file for first logical file.
 </documentation>
 </annotation>
 <complexType>
 <sequence>
 <element name="OrderPartyInfo" type="normalizedString"
 minOccurs="0">
 <annotation>
 <documentation xml:lang="de">
 Auftraggeber entsprechend Dateianzeige.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 163
 Status: Final Version 2.4.2

 </documentation>
 <documentation xml:lang="en">
 Order party information (from display file).
 </documentation>
 </annotation>
 </element>
 <element name="AccountInfo" minOccurs="0">
 <annotation>
 <documentation xml:lang="de">
 Erstes Auftraggeberkonto entsprechend
 Dateianzeige.
 </documentation>
 <documentation xml:lang="en">
 First order party account (from display file).
 </documentation>
 </annotation>
 <complexType>
 <sequence>
 <choice maxOccurs="2">
 <element name="AccountNumber">
 <annotation>
 <documentation xml:lang="de">
 Kontonummer (deutsches Format oder
 international als IBAN).
 </documentation>
 <documentation xml:lang="en">
 Account number (German format or
 international as IBAN).
 </documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension
 base="Q1:AccountNumberType">
 <attribute name="international"
 type="boolean" use="optional"
 default="false">
 <annotation>
 <documentation
 xml:lang="de">
 Ist die Kontonummer im
 deutschen Format
 (international=false)
 oder im internationalen
 Format
 (international=true,
 IBAN) angegeben?
 </documentation>
 <documentation
 xml:lang="en">
 Account number given in
 German format
 (international=false) or
 in international format
 (international=true,
 IBAN)?
 </documentation>
 </annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="NationalAccountNumber">
 <annotation>
 <documentation xml:lang="de">
 Kontonummer im freien Format.
 </documentation>
 <documentation xml:lang="en">
 Account number in free format.
 </documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension
 base="Q1:NationalAccountNumberType">
 <attribute name="format"

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 164
 Status: Final Version 2.4.2

 type="token" use="required">
 <annotation>
 <documentation
 xml:lang="de">
 Formatkennung.
 </documentation>
 <documentation
 xml:lang="en">
 Format type.
 </documentation>
 </annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </choice>
 <choice maxOccurs="2">
 <element name="BankCode">
 <annotation>
 <documentation xml:lang="de">
 Bankleitzahl (deutsches Format oder
 international als SWIFT-BIC).
 </documentation>
 <documentation xml:lang="en">
 Bank sort code (German format or
 international as SWIFT-BIC).
 </documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="Q1:BankCodeType">
 <attribute name="international"
 type="boolean" use="optional"
 default="false">
 <annotation>
 <documentation
 xml:lang="de">
 Ist die Bankleitzahl im
 deutschen Format
 (international=false,
 BLZ) oder im
 internationalen Format
 (international=true,
 SWIFT-BIC) angegeben?
 </documentation>
 <documentation
 xml:lang="en">
 Bank sort code given in
 German format
 (international=false) or
 in international format
 (international=true,
 SWIFT-BIC)?
 </documentation>
 </annotation>
 </attribute>
 <attribute name="Prefix"
 type="ebics:BankCodePrefixType"
 use="optional">
 <annotation>
 <documentation
 xml:lang="de">
 nationales Präfix für
 Bankleitzahlen.
 </documentation>
 <documentation
 xml:lang="en">
 National prefix for bank
 sort code.
 </documentation>
 </annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 165
 Status: Final Version 2.4.2

 <element name="NationalBankCode">
 <annotation>
 <documentation xml:lang="de">
 Bankleitzahl im freien Format.
 </documentation>
 <documentation xml:lang="en">
 Bank sort code in free format.
 </documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension
 base="Q1:NationalBankCodeType">
 <attribute name="format"
 type="token" use="required">
 <annotation>
 <documentation
 xml:lang="de">
 Formatkennung.
 </documentation>
 <documentation
 xml:lang="en">
 Format type.
 </documentation>
 </annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </choice>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
</group>

8.3.1.4.3 Meaning of the XML elements/attributes

XML element/

attribute
Data type # Meaning Example

HVZResponse»
OrderData

ebics:HVZResponse»
OrderDataType
(complex)

1 XML order data for order
type HVZ

- (complex)

OrderDetails ebics:HVUOrder»
DetailsType (complex)

1..∞ Order information for
order type HVZ

- (complex)

OrderType ebics:OrderTBaseType
(token, length=3,
pattern="[A-Z0-
9]{3}")

1 Order type of the order
submitted for VEU

“IZV”

OrderID ebics:OrderIDType
(token,
maxLength=4)

1 Order number of the
order submitted for VEU

“OR01”

DataDigest ebics:DigestType
(dsig:DigestValue»
Type
base64Binary)

1 Hash value from the ES
for the signature process
used by the subscriber
according to the
Request-Element User-
ID

- (base64 data)

DataDigest»
@SignatureVersion

ebics:Signature»Vers
ionType
(token, length=4,

 Version of the signature
process used by the
subscriber according to

e.g.
„A005“

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 166
 Status: Final Version 2.4.2

pattern="A\d{3}" the Request-Element
UserID

OrderDataAvailable boolean 1 Can the order file be
downloaded in the
original format? (HVT
with
completeOrderData=
true)

true

OrderDataSize positiveInteger 1 Size of the
uncompressed order
data of the order
submitted for VEU in
bytes

123456

OrderDetails»
Available

boolean 1 Can the order details be
downloaded as XML
document
HVTResponseOrderData
? (HVT with
completeOrderData=
false)

true

TotalOrders nonNegativeInteger 0..1 Total transaction number
for all logical files (from
dispay file).

15

TotalAmount ebics:AmountValue»
Type
(decimal,
totalDigits=24,
fractionDigits=4)

0..1 Total transaction amount
for all logical files (from
dispay file).

129.00

Currency ebics:CurrencyBase»
Type
(token, length=3,
pattern="[A-Z]{3}")

0..1 Order currency (only if
identical across all
transactions, skip
otherwise).

„USD“

FirstOrderInfo (complex) 0..1 Order details from
display file for first logical
file.

- (complex)

OrderPartyInfo normalizedString 0..1 Order party information
(from display file).

„Arnold Smith“

AccountInfo complex 0..1 - (complex)
- - 1..2 Information about the

account number:
AccountNumber and/or
NationalAccountNumber

-

AccountNumber ebics:AccountNumber»
Type
(token,
maxLength=40,
pattern="\d{3,10}|([
A-Z]{2}\d{2}[A-Za-
z0-9]{3,30}")

1 Account number
(German format or
international format =
IBAN)

„12345678“

AccountNumber»
@international

boolean 0..1 Account number given in
German format
(international=false) or in

„false“

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 167
 Status: Final Version 2.4.2

international format
(international=true,
IBAN)?
Default="false"

NationalAccount»
Number

ebics:National»
AccountNumberType
(token,
maxLength=40)

1 Account number in free
format (neither German
nor IBAN)

„123456789012
3456“

NationalAccount»
Number@format

token 1 format type „other“

- - 1..2 Information about Bank
sort code: BankCode
and/or
NationalBankCode

-

BankCode ebics:BankCodeType
(token,
maxLength=11,
pattern="\d{8}|([A-
Z]{6}[A-Z0-9]{2}([A-
Z0-9]{3})?)")

1 German Format or
international format (=
SWIFT-BIC).

„50010060“

BankCode»
@international

boolean 0..1 Bank sort code given in
German format
(BankCode»
@international=

"false") or in
international format
(BankCode»
@international="tr

ue", SWIFT-BIC)?
Default="false"

„false“

NationalBankCode ebics:National»
BankCodeType
(token,
maxLength=30)

1 Bank sort code in free
format (neither German
format nor SWIFT-BIC)

„123456789012
“

NationalBankCode»
@format

token 1 format type „other“

SigningInfo ebics:HVUSigning»

InfoType (complex)
1 Information on the

signature modalities
- (complex)

SigningInfo»
@readyToBeSigned

boolean 1 Is the order ready for
signature (true) or
already signed by the
subscriber (false)?

“true”

SigningInfo»
@NumSigRequired

positiveInteger 1 Total number of ES’s
required for activation

4

SigningInfo»
@numSigDone

nonNegativeInteger 1 Number of ES’s already
provided

2

SignerInfo ebics:SignerInfo»
Type (complex)

0..∞ Information on previous
signatories

- (complex)

PartnerID (in
SignerInfo)

ebics:PartnerIDType
(token,
maxLength=35,

1 Customer ID of the
signatory

“CUSTM001”

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 168
 Status: Final Version 2.4.2

pattern="[a-zA-Z0-
9,=]{1,35})

UserID (in
SignerInfo)

ebics:UserIDType
(token,
maxLength=35,
pattern="[a-zA-Z0-
9,=]{1,35})

1 Subscriber ID of the
signatory

“USR100“

Name (in SignerInfo) ebics:NameType
(normalizedString)

0..1 Signatory’s name “John Doe“

Timestamp (in
SignerInfo)

ebics:TimestampType
(dateTime)

1 Time stamp of the
signature (i.e.
transmission of the
signature)

“2005-01-31T»
16:30:45.123Z“

Permission - (complex)

1 Additional authorisation
information relating to the
subscriber that acted as
signatory

- (complex)

Permission»
@Authorisation»
Level

ebics:Authorisation»
LevelType
(token, length=1:
"E", "A", "B", "T")

1 Signature authorisation
of the subscriber that
acted as signatory

“A“

OriginatorInfo ebics:HVUOriginator»
InfoType (complex)

1 Information on the
initiating party

- (complex)

PartnerID (in
OriginatorInfo)

ebics:PartnerIDType
(token, maxLength=
35, pattern="[a-zA-
Z0-9,=]{1,35})

1 Customer ID of the
initiating party

“CUSTM002”

UserID (in
OriginatorInfo)

ebics:UserIDType
(token,
maxLength=35,
pattern="[a-zA-Z0-
9,=]{1,35})

1 Subscriber ID of the
initiating party

“USR300“

Name (in
OriginatorInfo)

ebics:NameType
(normalizedString)

0..1 Name of the initiating
party

“Ophelia
Originator“

Timestamp (in
OriginatorInfo)

ebics:TimestampType
(dateTime)

1 Time stamp of the
submission (i.e. trans-
mission of the order file)

“2005-01-30T»
15:30:45.123Z“

8.3.1.4.4 Example XML
<?xml version="1.0" encoding="UTF-8"?>
<HVZResponseOrderData xmlns="http://www.ebics.org/H003"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_orders.xsd">
 <OrderDetails>
 <OrderType>IZV</OrderType>
 <OrderID>OR01</OrderID>
 <DataDigest SignatureVersion="A004">9H/rQr2Axe9hYTV2n/tCp+3UIQQ=</DataDigest>
 <OrderDataAvailable>true</OrderDataAvailable>
 <OrderDataSize>123456</OrderDataSize>
 <OrderDetailsAvailable>true</OrderDetailsAvailable>
 <TotalOrders>22</TotalOrders>
 <TotalAmount>500.00</TotalAmount>
 <Currency>EUR</Currency>
 <FirstOrderInfo>
 <OrderPartyInfo>Arnold Auftraggeber</OrderPartyInfo>
 <AccountInfo>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 169
 Status: Final Version 2.4.2

 <AccountNumber international="true">
 DE68210501700012345678
 </AccountNumber>
 <BankCode international="false" Prefix="DE">
 21050170
 </BankCode>
 </AccountInfo>
 </FirstOrderInfo>
 <SigningInfo NumSigRequired="4" readyToBeSigned="true"
 NumSigDone="2" />
 <SignerInfo>
 <PartnerID>PARTNER1</PartnerID>
 <UserID>USER0001</UserID>
 <Name>Max Mustermann</Name>
 <Timestamp>2005-01-31T16:30:45.123Z</Timestamp>
 <Permission AuthorisationLevel="A" />
 </SignerInfo>
 <SignerInfo>
 <PartnerID>PARTNER2</PartnerID>
 <UserID>USER0002</UserID>
 <Name>Maxime Musterfrau</Name>
 <Timestamp>2005-01-31T17:30:45.123Z</Timestamp>
 <Permission AuthorisationLevel="B" />
 </SignerInfo>
 <OriginatorInfo>
 <PartnerID>PARTNER1</PartnerID>
 <UserID>USER0001</UserID>
 <Name>Erich Einreicher</Name>
 <Timestamp>2005-01-30T15:30:45.123Z</Timestamp>
 </OriginatorInfo>
 </OrderDetails>
</HVZResponseOrderData>

8.3.2 HVD (retrieve VEU state) [mandatory]
With HVD, a subscriber can retrieve the state of an order that is currently in VEU processing
and for which the subscriber is authorised as a signatory. They receive information about the
order in the form of an electronic accompanying note (DisplayFile) and the order hash
value (DataDigest) as well as the previous signatories (SignerInfo). The bank system
has extracted the order’s hash value from the ES of the first signatory of the order or it is
recalculated if the subscriber executing HVD is using a different signature process. The data
of the accompanying note MUST correspond in terms of contents with the order data, the
hash value of which is also delivered.

The bank system has to verify whether the subscriber possesses a bank-technical
authorisation of signature (signature class E, A or B) for the order on hand and the order is
still in the signature folder. If the authorisation is missing, the transaction has to be cancelled
and the error code EBICS_DISTRIBUTED_SIGNATURE_AUTHORISATION_FAILED is
issued.

• In case of some underlying order types / business transactions, detailed
information on a specific order in the VEU processing system cannot be
retrieved by means of the transaction HVT. Whether this is possible for the
ongoing order or not, is signalized in the HVD response by the bank system.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 170
 Status: Final Version 2.4.2

• Before the execution of HVD, the bank system verifies whether the order is
currently located in the VEU processing system and, in case of an error,
terminates the transaction returning the business related error code
EBICS_ORDERID_UNKNOWN.

HVD is an order type of type “download”.

8.3.2.1 HVD request
In the HVD request, the subscriber transfers the relevant data for identification of the order
for which they want to retrieve the VEU state.

Characteristics of OrderParams (order parameters) for HVD: HVDOrderParams

8.3.2.1.1 XML schema (graphical representation)

Diagram 79: HVDOrderParams

8.3.2.1.2 XML schema (textual representation)

 <element name="HVDOrderParams" type="ebics:HVDOrderParamsType"
substitutionGroup="ebics:OrderParams">
 <annotation>
 <documentation xml:lang="en">additional order parameters for order type
HVD.</documentation>
 </annotation>
 </element>
 <complexType name="HVDOrderParamsType">
 <annotation>
 <documentation xml:lang="en">Data type for additional order parameters regarding order
type HVD.</documentation>
 </annotation>
 <sequence>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 171
 Status: Final Version 2.4.2

 <group ref="ebics:HVRequestStructure"/>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <group name="HVRequestStructure">
 <annotation>
 <documentation xml:lang="en">Standard request structure for HVx orders (HVD, HVT, HVE,
HVS).</documentation>
 </annotation>
 <sequence>
 <annotation>
 <documentation xml:lang="en">Standard request data.</documentation>
 </annotation>
 <element name="PartnerID" type="ebics:PartnerIDType">
 <annotation>
 <documentation xml:lang="en">Customer ID of the presenter of the selected
order.</documentation>
 </annotation>
 </element>
 <element name="OrderType" type="ebics:OrderTBaseType">
 <annotation>
 <documentation xml:lang="en">Order type of the selected order.</documentation>
 </annotation>
 </element>
 <element name="OrderID" type="ebics:OrderIDType">
 <annotation>
 <documentation xml:lang="en">Order ID of the selected order.</documentation>
 </annotation>
 </element>
 </sequence>
 </group>

8.3.2.1.3 Meaning of the XML elements/attributes

XML element/

attribute
Data type # Meaning Example

HVDOrderParams ebics:HVDOrderParamsType
(complex)

1 Order parameters for
order type HVD

- (complex)

PartnerID ebics:PartnerIDType
(token, maxLength=35,
pattern="[a-zA-Z0-
9,=]{1,35})

1 Customer ID of the
initiating party

“CUSTM001”

OrderType ebics:OrderTBaseType
(token, length=3,
pattern="[A-Z0-9]{3}")

1 Order type of the order
submitted for VEU

“IZV”

OrderID ebics:OrderIDType
(token, fixLength=4)

1 Order number of the order
submitted for VEU

“OR01”

8.3.2.1.4 Example XML (abridged)
<?xml version="1.0" encoding="UTF-8"?>
<ebicsRequest
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_request.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 172
 Status: Final Version 2.4.2

 <static>
 <!-- […] -->
 <OrderDetails>
 <OrderType>HVD</OrderType>
 <OrderAttribute>DZNNN</OrderAttribute>
 <HVDOrderParams>
 <PartnerID>PARTNER1</PartnerID>
 <OrderType>IZV</OrderType>
 <OrderID>OR01</OrderID>
 </HVDOrderParams>
 </OrderDetails>
 <!-- […] -->
 </static>
 <!-- […] -->
 </header>
 <!-- […] -->
</ebicsRequest>

8.3.2.2 HVD response
The HVD response contains VEU information relating to the order that the subscriber has
requested in the HVD request. In particular, the hash value of the order data is returned from
the ES of the first signatory, along with the accompanying note. In addition, the information is
contained whether the bank system supports the transaction HVT for the particular order.
The following distinction is made:

• OrderDataAvailable : Download of the complete order file wíth HVT and
completeOrderData=true possible?

• OrderDetailsAvailable : Download of the edited order details in XML
format with HVT and completeOrderData=false possible?

The HVD response provides the subscriber with all data that they require for
acknowledgement of the order via HVE or cancellation via HVS.

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for
HVD: HVDResponseOrderData

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 173
 Status: Final Version 2.4.2

8.3.2.2.1 XML schema (graphical representation)

Diagram 80: HVDResponseOrderData

8.3.2.2.2 XML schema (textual representation)

 <element name="HVDResponseOrderData" type="ebics:HVDResponseOrderDataType"
substitutionGroup="ebics:EBICSOrderData">
 <annotation>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 174
 Status: Final Version 2.4.2

 <documentation xml:lang="en">Order data for order type HVD (response: receive the status
of an order currently stored in the distributed signature processing unit).</documentation>
 </annotation>
 </element>

 <complexType name="HVDResponseOrderDataType">
 <annotation>
 <documentation xml:lang="en">Data type for order data of type HVD (response: receive the
status of an order currently stored in the distributed signature processing
unit).</documentation>
 </annotation>
 <sequence>
 <element name="DataDigest" type="ebics:DigestType">
 <annotation>
 <documentation xml:lang="en">Hash value of the order data.</documentation>
 </annotation>
 </element>
 <element name="DisplayFile" type="base64Binary">
 <annotation>
 <documentation xml:lang="en">Accompanying ticket / "display file" (corresponds to the
display file of the customer's journal according to the document "DFÜ-
Abkommen").</documentation>
 </annotation>
 </element>
 <element name="OrderDataAvailable" type="boolean">
 <annotation>
 <documentation xml:lang="de">Can the order file be downloaded in the original format?
(HVT with completeOrderData=true)</documentation>
 </annotation>
 </element>
 <element name="OrderDataSize" type="positiveInteger">
 <annotation>
 <documentation xml:lang="de">Size of the uncompressed order data (byte
count)</documentation>
 </annotation>
 </element>
 <element name="OrderDetailsAvailable" type="boolean">
 <annotation>
 <documentation xml:lang="de">Can the order details be downloaded as XML document
HVTResponseOrderData? (HVT with completeOrderData=false)</documentation>
 </annotation>
 </element>
 <element name="BankSignature" type="ebics:SignatureType" minOccurs="0" maxOccurs="0">
 <annotation>
 <documentation xml:lang="en">Digital signature issued by the bank, covering the hash
value and the accompanying ticket.</documentation>
 </annotation>
 </element>
 <element name="SignerInfo" type="ebics:SignerInfoType" minOccurs="0"
maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">Information about the already existing
signers.</documentation>
 </annotation>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

8.3.2.2.3 Meaning of the XML elements/attributes

XML element/ attribute Data type # Meaning Example

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 175
 Status: Final Version 2.4.2

HVDResponseOrderData ebics:HVDResponse
»
OrderDataType
(complex)

1 XML order data for order
type HVD

-
(complex)

DataDigest ebics:DigestType
(dsig:DigestValu
e»
Type
base64Binary)

1 Hash value of the order for
the signature process used
by the subscriber according
to the Request-Element
UserID

- (base64
data)

DataDigest»
@SignatureVersion

ebics:Signature»V
ersionType
(token,
length=4,
pattern="A\d{3}"

 Version for the signature
process used by the
subscriber according to the
Request-Element UserID

e.g.
„A006“

DisplayFile base64Binary 1 Accompanying
note/“display file“ for
submitted order

- (base64
data)

OrderDataAvailable boolean 1 Can the order file be
downloaded in the original
format? (HVT with
completeOrderData=tr

ue)

true

OrderDataSize positiveInteger 1 Size of the uncompressed
order data (byte count)

1280

OrderDetailsAvailable boolean 1 Can the order details be
downloaded as XML
document
HVTResponseOrderData?
(HVT with
completeOrderData=fa

lse)

true

BankSignature ebics:SignatureTy
pe
(base64Binary)

0 ES of the financial
institution via hash value
and accompanying note,
planned feature

- (base64
data)

SignerInfo ebics:SignerInfo»
Type (complex)

0..∞ Information on previous
signatories

-
(complex)

For the remaining XML elements and attributes: See order type HVU (Chapter 8.3.1.2).

8.3.2.2.4 Example XML
<?xml version="1.0" encoding="UTF-8"?>
<HVDResponseOrderData
 xmlns="http://www.ebics.org/H003"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_orders.xsd">
 <DataDigest SignatureVersion="A004">9H/rQr2Axe9hYTV2n/tCp+3UIQQ=</DataDigest>
 <DisplayFile>…</DisplayFile>
 <OrderDataAvailable>true</OrderDataAvailable>
 <OrderDataSize>1280</OrderDataSize>
 <OrderDetailsAvailable>true</OrderDetailsAvailable>
 <SignerInfo>
 <PartnerID>CUSTM001</PartnerID>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 176
 Status: Final Version 2.4.2

 <UserID>USR100</UserID>
 <Name>John Doe</Name>
 <Timestamp>2005-01-31T16:30:45.123Z</Timestamp>
 <Permission AuthorisationLevel="A"/>
 </SignerInfo>
 <SignerInfo>
 <PartnerID>CUSTM002</PartnerID>
 <UserID>USR200</UserID>
 <Name>Jackie Smith</Name>
 <Timestamp>2005-01-31T17:30:45.123Z</Timestamp>
 <Permission AuthorisationLevel="B"/>
 </SignerInfo>
</HVDResponseOrderData>

8.3.3 HVT (retrieve VEU transaction details) [mandatory]
HVT provides the subscriber with detailed information about an order from VEU processing
for which the subscriber is authorised as a signatory. Depending on the request
(OrderFlags@completeOrderData), they either receive the complete order file or
account details, implementation deadline, amounts and other descriptions (OrderInfo).

The subscriber can transmit other filter criteria (e.g. for selection of individual orders within an
overall order) via request in the generic key value structure (Parameter).

In the case of some order types / business transactions, it is not possible to retrieve detailed
information by means of OrderFlags@completeOrderData="false". In this case, the
bank system returns the business related error code
EBICS_UNSUPPORTED_REQUEST_FOR_ORDER_INSTANCE. With
OrderDataAvailable and OrderDetailsAvailable in the HVD response, the bank
system signals if an HVT transaction for a specific order within the VEU administration can
be executed.
Before the execution of HVT, the bank system verifies whether the order is currently located
in the VEU processing system and, in case of an error, terminates the transaction returning
the business related error code EBICS_ORDERID_UNKNOWN.

The bank system has to verify whether the subscriber possesses a bank-technical
authorisation of signature (signature class E, A or B) for the order on hand and the order is
still in the signature folder. If the authorisation is missing, the transaction has to be cancelled
and the error code EBICS_DISTRIBUTED_SIGNATURE_AUTHORISATION_FAILED is
issued.

HVT is an order type of the type “download”.

8.3.3.1 HVT request
In the HVT request, the subscriber specifies the order for which they want to retrieve the
VEU transaction details. In addition, they decide whether they want to have order details

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 177
 Status: Final Version 2.4.2

(completeOrderData="false") or the complete order file
(completeOrderData="true") as a response by setting the OrderFlag
completeOrderData.

If completeOrderData="false", the customer system may limit the number of order
details that the bank system is to provide. By means of the attribute fetchLimit for the
element OrderFlags the maximum number of order details to be transmitted can be
defined. If fetchLimit is not explicitly defined, the default value 100 of the XML schema is
applied. If fetchLimit=0, all order details of an order are requested.
By means of the attribute fetchOffset the customer system is able to define an offset
position in the original order file. From this position onwards the order details are returned. If
the default value 0 for fetchOffset is applied, order details are requested from the starting
point of the order file.
If the value for fetchOffset is higher than the total number of order details, the business
related error EBICS_INVALID_ORDER_PARAMS is returned.

The generic key value structure (Parameter) is available for further filter criteria.

Characteristics of OrderParams (order parameters) for HVT: HVTOrderParams

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 178
 Status: Final Version 2.4.2

8.3.3.1.1 XML schema (graphical representation)

Diagram 81: HVTOrderParams

8.3.3.1.2 XML schema (textual representation)

 <element name="HVTOrderParams" type="ebics:HVTOrderParamsType"
substitutionGroup="ebics:OrderParams">

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 179
 Status: Final Version 2.4.2

 <annotation>
 <documentation xml:lang="en">additional order parameters for order type
HVT.</documentation>
 </annotation>
 </element>

 <complexType name="HVTOrderParamsType">
 <annotation>
 <documentation xml:lang="en">Data type for additional order parameters regarding order
type HVT.</documentation>
 </annotation>
 <sequence>
 <group ref="ebics:HVRequestStructure"/>
 <element name="OrderFlags" type="ebics:HVTOrderFlagsType">
 <annotation>
 <documentation xml:lang="en">Special order flags for orders of type
HVT.</documentation>
 </annotation>
 </element>
 <element ref="ebics:Parameter" minOccurs="0" maxOccurs="unbounded"/>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <group name="HVRequestStructure">
 <annotation>
 <documentation xml:lang="en">Standard request structure for HVx orders (HVD, HVT, HVE,
HVS).</documentation>
 </annotation>
 <sequence>
 <annotation>
 <documentation xml:lang="en">Standard request data.</documentation>
 </annotation>
 <element name="PartnerID" type="ebics:PartnerIDType">
 <annotation>
 <documentation xml:lang="en">Customer ID of the presenter of the selected
order.</documentation>
 </annotation>
 </element>
 <element name="OrderType" type="ebics:OrderTBaseType">
 <annotation>
 <documentation xml:lang="en">Order type of the selected order.</documentation>
 </annotation>
 </element>
 <element name="OrderID" type="ebics:OrderIDType">
 <annotation>
 <documentation xml:lang="en">Order ID of the selected order.</documentation>
 </annotation>
 </element>
 </sequence>
 </group>

 <complexType name="HVTOrderFlagsType">
 <annotation>
 <documentation xml:lang="en">Data type for special order flags regarding order type
HVT.</documentation>
 </annotation>
 <simpleContent>
 <extension base="ebics:OrderIDType">
 <attribute name="completeOrderData" type="boolean" use="optional" default="false">
 <annotation>
 <documentation xml:lang="en">Are the transaction details to be transmitted as
particular order content information requested for display matters, or in complete order data
file form?</documentation>
 </annotation>
 </attribute>
 <attribute name="fetchLimit" use="optional" default="100">

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 180
 Status: Final Version 2.4.2

 <annotation>
 <documentation xml:lang="de">Limit for the transaction details to be transmitted;
if completeOrderData=false, maximum number of details of a particular order; 0 for unlimited
number of details.</documentation>
 </annotation>
 <simpleType>
 <restriction base="nonNegativeInteger">
 <totalDigits value="10"/>
 </restriction>
 </simpleType>
 </attribute>
 <attribute name="fetchOffset" use="optional" default="0">
 <annotation>
 <documentation xml:lang="de">Offset position in the orginal order file which marks
the starting point for the transaction details to be transmitted; applies to the sequential
number of a particular order if completeOrderData=false.</documentation>
 </annotation>
 <simpleType>
 <restriction base="nonNegativeInteger">
 <totalDigits value="10"/>
 </restriction>
 </simpleType>
 </attribute>
 <anyAttribute namespace="##targetNamespace" processContents="strict"/>
 </extension>
 </simpleContent>
 </complexType>

 <element name="Parameter">
 <annotation>
 <documentation xml:lang="en">generic key-value parameters.</documentation>
 </annotation>
 <complexType>
 <sequence>
 <element name="Name" type="token">
 <annotation>
 <documentation xml:lang="en">Name of the parameter (=key).</documentation>
 </annotation>
 </element>
 <element name="Value">
 <annotation>
 <documentation xml:lang="en">Value of the parameter.</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="anySimpleType">
 <attribute name="Type" type="NCName" use="optional" default="string">
 <annotation>
 <documentation xml:lang="en">XML type of the parameter value (default is
"string").</documentation>
 </annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>

8.3.3.1.3 Meaning of the XML elements/attributes

XML element/ Data type # Meaning Example

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 181
 Status: Final Version 2.4.2

attribute
HVTOrderParams ebics:HVTOrderParams»

Type (complex)
1 Order parameters for order

type HVT
- (complex)

PartnerID ebics:PartnerIDType
(token,
maxLength=35,
pattern="[a-zA-Z0-
9,=]{1,35})

1 Customer ID of the initiating
party

“CUSTM001”

OrderType ebics:OrderTBaseType
(token, length=3,
pattern="[A-Z0-9]{3}")

1 Order type of the order
submitted for VEU

“IZV”

OrderID ebics:OrderIDType
(token, fixLength=4)

1 Order number of the order
submitted for VEU

“OR01”

OrderFlags ebics:HVTOrderFlags»
Type (complex)

1 Specific “switch“ for HVT
orders

- (complex)

OrderFlags»
@complete»
OrderData

boolean 0..1 Should the transaction
details be transmitted as
individual order detailed
information
(@completeOrderData=
"false") or as a complete
order file
(@completeOrderData=
"true")?
(Default="false")

“false“

OrderFlags»
@fetchLimit

nonNegativeInteger 0..1 Maximum number of order
details to be transmitted if
@completeOrderData=
"false",

"0“ for unlimited number of
details
(Default=“100“)

10

OrderFlags»
@fetchOffset

nonNegativeInteger 0..1 Offset position in the orginal
order file which marks the
starting point for the
transaction details to be
transmitted; applies to the
sequential number of a
particular order if
completeOrderData=false.
(Default=“0“)

20

Parameter Reference to global element
(complex)

0..∞ Structure for generic key
value parameters with
optional type specification

- (complex)

8.3.3.1.4 Example XML (abridged)
<?xml version="1.0" encoding="UTF-8"?>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 182
 Status: Final Version 2.4.2

<ebicsRequest
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_request.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <!-- […] -->
 <OrderDetails>
 <OrderType>HVT</OrderType>
 <OrderAttribute>DZNNN</OrderAttribute>
 <HVTOrderParams>
 <PartnerID>PARTNER1</PartnerID>
 <OrderType>IZV</OrderType>
 <OrderID>OR01</OrderID>
 <OrderFlags completeOrderData="false" fetchLimit="50" fetchOffset="0"/>
 </HVTOrderParams>
 </OrderDetails>
 <!-- […] -->
 </static>
 <!-- […] -->
 </header>
 <!-- […] -->
</ebicsRequest>

8.3.3.2 HVT response
Depending on the selection of the attribute completeOrderData at the element
OrderFlags the HVT response contains two different formats for the order specified in the
HVT request.

If the flag completeOrderData=true is set, the customer system requests the download
of order data in the original format. This download is a standard download without any
additional embedding of order data into an XML document, i.e. the order data are transmitted
to the customer system after having been compressed, encrypted and, if required,
segmented.

If the flag completeOrderData=false is set, the customer system requests the download
of order details in the edited XML format. This comprises an XML document with the root
element HVTResponseOrderData that is transmitted to the customer system after having
been compressed, encrypted and, if required, segmented. In this case, the response stores
the total number of order details of the original order file in the element NumOrderInfos.

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for
HVT: HVTResponseOrderData

If a subscriber executes HVT, although the bank does not support HVT for the order on
hand, the transaction has to be cancelled and the return code
EBICS_UNSUPPORTED_REQUEST_FOR_ORDER_INSTANCE is to be issued.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 183
 Status: Final Version 2.4.2

8.3.3.2.1 XML schema (graphical representation)

Diagram 82: HVTResponseOrderData

Diagram 83: HVTOrderInfoType (to OrderInfo)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 184
 Status: Final Version 2.4.2

Diagram 84: HVTAccountInfoType (to AccountInfo)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 185
 Status: Final Version 2.4.2

8.3.3.2.2 XML schema (textual representation)

 <element name="HVTResponseOrderData" type="ebics:HVTResponseOrderDataType"
substitutionGroup="ebics:EBICSOrderData">
 <annotation>
 <documentation xml:lang="en">Order data for order type HVT (response: receive transaction
details of an order currently stored in the distributed signature processing
unit).</documentation>
 </annotation>
 </element>

 <complexType name="HVTResponseOrderDataType">
 <annotation>
 <documentation xml:lang="en">Data type for response with particular order content
information of type HVT (response: receive transaction details of an order currently stored in
the distributed signature processing unit with completeOrderData="false").</documentation>
 </annotation>
 <sequence>
 <element name="NumOrderInfos" type="ebics:NumOrderInfosType">
 <annotation>
 <documentation xml:lang="en">Total number of particular orders for the
order</documentation>
 <documentation xml:lang="en">Total number of order infos for the
order.</documentation>
 </annotation>
 </element>
 <element name="OrderInfo" type="ebics:HVTOrderInfoType" maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">Particular order content information requested for
display matters.</documentation>
 </annotation>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="HVTOrderInfoType">
 <annotation>
 <documentation xml:lang="en">Data type for order information regarding order type
HVT.</documentation>
 </annotation>
 <sequence>
 <element name="OrderFormat" type="ebics:OrderFormatType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Specific order format (e.g. DTAZV).</documentation>
 </annotation>
 </element>
 <element name="AccountInfo" type="ebics:HVTAccountInfoType" minOccurs="2" maxOccurs="3">
 <annotation>
 <documentation xml:lang="en">account-related order details (originator, recipient,
etc.).</documentation>
 </annotation>
 </element>
 <element name="ExecutionDate" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Date of execution of the order.</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="date"/>
 </simpleContent>
 </complexType>
 </element>
 <element name="Amount">
 <annotation>
 <documentation xml:lang="en">Total amount of the order.</documentation>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 186
 Status: Final Version 2.4.2

 </annotation>
 <complexType>
 <simpleContent>
 <extension base="ebics:AmountValueType">
 <attribute name="isCredit" type="boolean" use="optional">
 <annotation>
 <documentation xml:lang="en">Is this a credit or a debit
order?</documentation>
 </annotation>
 </attribute>
 <attribute name="Currency" type="ebics:CurrencyBaseType" use="optional">
 <annotation>
 <documentation xml:lang="en">Currency code for the amount.</documentation>
 </annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="Description" minOccurs="0" maxOccurs="4">
 <annotation>
 <documentation xml:lang="en">Text field to be used for describing the transaction to
a greater extent (purpose, order details, comments).</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="Type" use="required">
 <annotation>
 <documentation xml:lang="en">Data type for the description.</documentation>
 </annotation>
 <simpleType>
 <restriction base="token">
 <enumeration value="Purpose"/>
 <enumeration value="Details"/>
 <enumeration value="Comment"/>
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="HVTAccountInfoType">
 <annotation>
 <documentation xml:lang="en">Data type for account information regarding order type
HVT.</documentation>
 </annotation>
 <complexContent>
 <extension base="ebics:AttributedAccountType"/>
 </complexContent>
 </complexType>

 <complexType name="AttributedAccountType">
 <annotation>
 <documentation xml:lang="en">Data type for detailed account information including the
role assignments present during the transaction</documentation>
 </annotation>
 <sequence>
 <element name="AccountNumber" maxOccurs="2">
 <annotation>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 187
 Status: Final Version 2.4.2

 <documentation xml:lang="en">Account number (German format and/or
international=IBAN).</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="ebics:AccountNumberType">
 <attribute name="Role" type="ebics:AccountNumberRoleType" use="required">
 <annotation>
 <documentation xml:lang="en">Role of the account during the
transaction.</documentation>
 </annotation>
 </attribute>
 <attribute name="Description" type="normalizedString">
 <annotation>
 <documentation xml:lang="en">Textual description of the role the account
plays during the transaction; use only if the corresponding "Role" field is set to
"Other".</documentation>
 </annotation>
 </attribute>
 <attribute name="international" type="boolean" use="optional" default="false">
 <annotation>
 <documentation xml:lang="en">Is the account number specified using the
national=German or the international=IBAN format?</documentation>
 </annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="BankCode" maxOccurs="2">
 <annotation>
 <documentation xml:lang="en">Bank code (German and/or international=SWIFT-BIC
format).</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="ebics:BankCodeType">
 <attribute name="Role" type="ebics:BankCodeRoleType" use="required">
 <annotation>
 <documentation xml:lang="en">Role of the bank during the
transaction.</documentation>
 </annotation>
 </attribute>
 <attribute name="Description" type="normalizedString">
 <annotation>
 <documentation xml:lang="en">Textual description of the role the bank plays
during the transaction; use only if the corresponding "Role" field is set to
"Other".</documentation>
 </annotation>
 </attribute>
 <attribute name="international" type="boolean" use="optional" default="false">
 <annotation>
 <documentation xml:lang="en">Is the bank code specified using the
national=German or the international=SWIFT-BIC format?</documentation>
 </annotation>
 </attribute>
 <attribute name="Prefix" type="ebics:BankCodePrefixType" use="optional">
 <annotation>
 <documentation xml:lang="en">National=German prefix for bank
codes.</documentation>
 </annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 188
 Status: Final Version 2.4.2

 </element>
 <element name="AccountHolder" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Name of the account holder.</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="ebics:AccountHolderType">
 <attribute name="Role" type="ebics:AccountHolderRoleType" use="required">
 <annotation>
 <documentation xml:lang="en">Role of the account holder during the
transaction.</documentation>
 </annotation>
 </attribute>
 <attribute name="Description" type="normalizedString">
 <annotation>
 <documentation xml:lang="en">Textual description of the role the account
holder plays during the transaction; use only if the corresponding "Role" field is set to
"Other".</documentation>
 </annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 <attribute name="Currency" type="ebics:CurrencyBaseType" use="optional" default="EUR">
 <annotation>
 <documentation xml:lang="en">Currency code for this account. Default is "EUR", if
omitted.</documentation>
 </annotation>
 </attribute>
 <attribute name="Description" type="ebics:AccountDescriptionType">
 <annotation>
 <documentation xml:lang="en">Description of this account.</documentation>
 </annotation>
 </attribute>
 </complexType>

 <complexType name="AmountType">
 <annotation>
 <documentation xml:lang="en">Data type for an amount including a currency attribute
(defaults to "EUR").</documentation>
 </annotation>
 <simpleContent>
 <extension base="ebics:AmountValueType">
 <attribute name="Currency" type="ebics:CurrencyBaseType" use="optional" default="EUR">
 <annotation>
 <documentation xml:lang="en">Currency code, default setting is
"EUR".</documentation>
 </annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>

8.3.3.2.3 Meaning of the XML elements/attributes

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 189
 Status: Final Version 2.4.2

XML element/
attribute

Data type # Meaning Example

NumOrderInfos ebics:NumOrderInfosT

ype

1

Total number of particular
orders in the original file

42

OrderInfo ebics:HVTOrderInfo
(complex)

1..∞ Individual order information - (complex)

OrderFormat ebics:OrderFormat»

Type
(token,
maxLength=8)

0..1 Order format “DTAZV“

AccountInfo ebics:HVTAccount»
InfoType (complex)

2..3 Account-related detailed
information on the individual
order (order party, recipient,
opt. initiating party)

- (complex)

AccountInfo»
@Currency

ebics:CurrencyBase»
Type
(token, length=3,
pattern="[A-Z]{3}")

0..1 Currency code of the account in
accordance with ISO 4217;
default = “EUR”

“EUR”

AccountInfo»
@Description

ebics:Account»
DescriptionType
(normalizedString)

0..1 Textual description of the
account

“Savings”

ExecutionDate date 0..1 Implementation date of the
individual order in accordance
with ISO 8601

2005-01-31

Amount ebics:AmountValue»
Type
(decimal,
totalDigits=24,
fractionDigits=4)

1 Amount of the individual order 1234.567

Amount»
@Currency

ebics:CurrencyBase»
Type
(token, length=3,
pattern="[A-Z]{3}")

0..1 Currency code of the individual
order amount in accordance
with ISO 4217

“EUR”

Amount»
@isCredit

boolean 0..1 Flag for differentiation between
credit note
(isCredit="true") and debit
note (isCredit="false")

“false“

Description string 0..4 Text fields for further
description of the order
transaction (purpose, order
details, comment)

“Account
no. 2345“

Description»
@Type

token: "Purpose",
"Details",
"Comment")

1 Type of description:
„Purpose“=reason for payment,
„Details“=order details,
„Comment“=comment

“Purpose“

- - 1..2 Information on the account
number: AccountNumber and/or
NationalAccountNumber

AccountNumber ebics:AccountNumber»
Type
(token,
maxLength=40,

1 Account number, either in
national (= German) or
international format (IBAN)

„12345678“

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 190
 Status: Final Version 2.4.2

pattern="\d{3,10}|([
A-Z]{2}\d{2}[A-Za-
z0-9]{3,30}")

AccountNumber»
@Role

ebics:AccountNumber»
RoleType
(token:
"Originator",
"Recipient",
"Charges", "Other")

1 Role of the account within the
payment transaction:
“Originator”=account of the
ordering party,
“Recipient”=account of the
recipient, “Charges”=account
for charges, “Other”= other role
(see AccountNumber»
@Description)

“Originator“

AccountNumber»
@Description

normalizedString 0..1 Textual description of the role of
the account within the payment
transaction if
AccountNumber@Role=
"Other" is selected.

“Nostro“

AccountNumber»
@international

boolean 0..1 Is the account number specified
in national = German
(AccountNumber»
@international="false")
or in international = IBAN
format (AccountNumber»
@international="true")?
Default="false"

“false“

NationalAccount
Number

 1 Account number in free format
(for national account numbers
that correspond to neither
German nor international
standards)

„12345678
90123456“

NationalAccount
Number»
@Role

ebics:AccountNumber»
RoleType
(token:
"Originator",
"Recipient",
"Charges", "Other")

1 Role of the account within the
transaction:
“Originator”=account of the
ordering party,
“Recipient”=account of the
recipient, “Charges”=account
for charges, “Other”= other role
(see AccountNumber»
@Description)

„Originator“

NationalAccount
Number»
@Description

normalizedString 0..1 Textual description of the
account within the transaction if
AccountNumber@Role=
"Other" is selected

„Nostro“

National»
AccountNumber»
@format

token 1 Description of the account
number's format

„other“

- - 1..2 Information on the bank code:
BankCode and/or
NationalBankCode

-

BankCode ebics:BankCodeType
(token,
maxLength=11,

1 Bank code, either in national (=
German) or international format
(SWIFT)

„50010060“

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 191
 Status: Final Version 2.4.2

pattern="\d{8}|([A-
Z]{6}[A-Z0-9]{2}([A-
Z0-9]{3})?)")

BankCode@Role ebics:BankCodeRole»
Type
(token:
"Originator",
"Recipient",
"Correspondent",
"Other")

1 Role of the financial institution
within the payment transaction:
„Originator”=ordering bank,
„Recipient”=receiving bank,
„Correspondent”=
correspondent bank,
„Other“=other role (see
BankCode@Description)

“Originator“

BankCode»
@Description

normalizedString 0..1 Textual description of the role of
the financial institution within
the payment transaction, if
BankCode@Role="Other" is
selected

“Clearing“

BankCode»
@international

boolean 0..1 Is the bank code specified in
national = German
(BankCode»
@international=
"false") or international =
SWIFT format (BankCode»
@international="true")?
Default="false"

“false“

BankCode@Prefix token, maxLength=2 0..1 National prefix for bank codes “DE“
NationalBank»
Code

ebics:National»
BankCodeType
(token,
maxLength=30)

1 Bank code in free format
(neither German format nor
SWIFT-BIC)

„12345678
9012“

NationalBank»
Code@Role

ebics:BankCodeRole»
Type
(token:
"Originator",
"Recipient",
"Correspondent",
"Other")

1 Role of the financial institution
within the transaction:
„Originator”=ordering bank,
„Recipient”=receiving bank,
„Correspondent”=corresponden
t bank,
„Other“=other role (see
BankCode@Description)

„Originator“

BankCode»
@Description

normalizedString 0..1 Textual description of the role
the financial institution plays
within the transaction, if
BankCode@Role="Other" is
chosen

„Clearing“

NationalBank»
Code@format

token 1 Format type “other”

AccountHolder ebics:AccountHolder»
Type
(normalizedString)

0..1 Name of the account holder “John Doe“

AccountHolder»
@Role

ebics:AccountHolder»
RoleType
(token:
"Originator",
"Recipient",
"Presenter",

0..1 Role of the account holder
within the payment transaction:
„Originator“=ordering party,
„Recipient“=recipient,
„Presenter“=submitting party of

“Originator“

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 192
 Status: Final Version 2.4.2

"Other") the order, „Other“=other role
(see AccountHolder»
@Description)

AccountHolder»
@Description

normalizedString 0..1 Textual description of the role of
the account holder within the
payment transaction if
AccountHolder@Role=
"Other" is selected.

“Trustee“

8.3.3.2.4 Example XML
<?xml version="1.0" encoding="UTF-8"?>
<HVTResponseOrderData
 xmlns="http://www.ebics.org/H003"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_orders.xsd">
 <NumOrderInfos>42</NumOrderInfos>
 <OrderInfo>
 <AccountInfo Currency="EUR">
 <AccountNumber Role="Originator" international="false">1234567890</AccountNumber>
 <BankCode Role="Originator" international="false" Prefix="DE">50010060</BankCode>
 <AccountHolder Role="Originator">Ophelia Originator</AccountHolder>
 </AccountInfo>
 <AccountInfo Currency="EUR">
 <AccountNumber Role="Recipient" international="false">1122334455</AccountNumber>
 <BankCode Role="Recipient" international="false">50070010</BankCode>
 <AccountHolder Role="Recipient">Ray Recipient</AccountHolder>
 </AccountInfo>
 <ExecutionDate>2005-01-31</ExecutionDate>
 <Amount isCredit="true" Currency="EUR">500.00</Amount>
 <Description Type="Purpose">Test transer</Description>
 </OrderInfo>
</HVTResponseOrderData>

8.3.4 HVE (add electronic signature) [mandatory]
With HVE, the subscriber adds a further bank-technical signature for authorisation to an
order from VEU processing.

The bank system has to verify whether the subscriber possesses a bank-technical
authorisation of signature (not signature class T) for the referenced order. If the authorisation
is missing, the transaction has to be cancelled and the existing return code
EBICS_AUTHORISATION_ORDER_TYPE_FAILED is issued.

Before HVE is executed, the bank system verifies whether the order is currently located in
the VEU processing system and terminates the transaction in case of an error returning the
business related error code EBICS_ORDERID_UNKNOWN.

HVE is an order type of type “upload”. The order attribute “OrderAttribute” is to be set to
“UZHNN”. Only the ES is transmitted via the hash value of the order from VEU processing

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 193
 Status: Final Version 2.4.2

(no order data, no ES for the order type HVE itself) whereas only the hash value of the VEU
processing is signed.

8.3.4.1 HVE request
With the HVE request, the subscriber specifies the order to which they want to add a bank-
technical signature, and supplies this signature in the same request in the XML body element
ebicsRequest/body/DataTransfer/SignatureData in compressed, encrypted and
base64-coded form. An HVE request does not contain any order data, i.e. the XML body
element ebicsRequest/body/DataTransfer/OrderData remains unfilled.

In order to provide the bank-technical signature, the subscriber needs either the hash value
of the original order data (e.g. retrievable via HVD or HVZ) or the order data itself (e.g. via
HVT with completeOrderData="true").

Characteristics of OrderParams (order parameters) for HVE: HVEOrderParams

8.3.4.1.1 XML schema (graphical representation)

Diagram 85: HVEOrderParams

8.3.4.1.2 XML schema (textual representation)

 <element name="HVEOrderParams" type="ebics:HVEOrderParamsType"
substitutionGroup="ebics:OrderParams">
 <annotation>
 <documentation xml:lang="en">additional order parameters for order type
HVE.</documentation>
 </annotation>
 </element>

 <complexType name="HVEOrderParamsType">
 <annotation>
 <documentation xml:lang="en">Data type for additional order parameters regarding order
type HVE.</documentation>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 194
 Status: Final Version 2.4.2

 </annotation>
 <sequence>
 <group ref="ebics:HVRequestStructure"/>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <group name="HVRequestStructure">
 <annotation>
 <documentation xml:lang="en">Standard request structure for HVx orders (HVD, HVT, HVE,
HVS).</documentation>
 </annotation>
 <sequence>
 <annotation>
 <documentation xml:lang="en">Standard request data.</documentation>
 </annotation>
 <element name="PartnerID" type="ebics:PartnerIDType">
 <annotation>
 <documentation xml:lang="en">Customer ID of the presenter of the selected
order.</documentation>
 </annotation>
 </element>
 <element name="OrderType" type="ebics:OrderTBaseType">
 <annotation>
 <documentation xml:lang="en">Order type of the selected order.</documentation>
 </annotation>
 </element>
 <element name="OrderID" type="ebics:OrderIDType">
 <annotation>
 <documentation xml:lang="en">Order ID of the selected order.</documentation>
 </annotation>
 </element>
 </sequence>
 </group>

8.3.4.1.3 Meaning of the XML elements/attributes

XML element/

attribute
Data type # Meaning Example

HVEOrderParams ebics:HVEOrderParamsType
(complex)

1 Order parameters for
order type HVE

- (complex)

PartnerID ebics:PartnerIDType
(token, maxLength=35,
pattern="[a-zA-Z0-
9,=]{1,35})

1 Customer ID of the
initiating party

“PARTNER1”

OrderType ebics:OrderTBaseType
(token, length=3,
pattern="[A-Z0-9]{3}")

1 Order type of the order in
VEU processing

“IZV”

OrderID ebics:OrderIDType
(token, fixLength=4)

1 Order number of the order
in VEU processing

“OR01”

8.3.4.1.4 Example XML (abridged)
<?xml version="1.0" encoding="UTF-8"?>
<ebicsRequest
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 195
 Status: Final Version 2.4.2

 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_request.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <!-- […] -->
 <OrderDetails>
 <OrderType>HVE</OrderType>
 <OrderID>HO04</OrderID>
 <OrderAttribute>UZHNN</OrderAttribute>
 <HVEOrderParams>
 <PartnerID>CUSTM001</PartnerID>
 <OrderType>IZV</OrderType>
 <OrderID>OR01</OrderID>
 </HVEOrderParams>
 </OrderDetails>
 <!-- […] -->
 </static>
 <!-- […] -->
 </header>
 <!-- […] -->
</ebicsRequest>

8.3.4.2 HVE response
The HVE response does not contain any VEU-specific data.

8.3.5 HVS (VEU cancellation) [mandatory]
The subscriber uses HVS to permanently cancel an existing order from VEU processing.

Before HVS is executed, the bank system verifies whether the order is currently located in
the VEU processing system and terminates the transaction in case of an error returning the
business related error code EBICS_ORDERID_UNKNOWN.

HVS is an order type of type “upload”. The order attribute “OrderAttribute” is to be set to
“UZHNN”. For cancellation authorisation, the ES is transmitted via the hash value of the
order that is to be cancelled (no order data, no ES for the order type HVS itself).

8.3.5.1 HVS request
The subscriber uses the HVS request to specify the order that is to be cancelled and delivers
the bank-technical signature that is necessary for the cancellation via the hash value of the
order data.

The bank system has to verify whether the subscriber possesses a bank-technical
authorisation of signature (not signature class T) for the referenced order. If the authorisation
is missing, the transaction will be cancelled and the existing return code
EBICS_AUTHORISATION_ORDER_TYPE_FAILED is issued.

The signature is transported in compressed, encrypted and base64-coded form in the XML
body element ebicsRequest/body/DataTransfer/SignatureData . The order

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 196
 Status: Final Version 2.4.2

cancellation is permanent, and always requires one single authorised signature of class “E”,
“A” or “B”.

In order to provide the bank-technical signature, the subscriber needs either the hash value
of the original order data (e.g. retrievable via HVD or HVZ) or the order data itself (e.g. via
HVT with completeOrderData="true").

Characteristics of OrderParams for HVS: HVSOrderParams

8.3.5.1.1 XML schema (graphic representation)

Diagram 86: HVSOrderParams

8.3.5.1.2 XML schema (textual representation)

 <element name="HVSOrderParams" type="ebics:HVSOrderParamsType"
substitutionGroup="ebics:OrderParams">
 <annotation>
 <documentation xml:lang="en">additional order parameters for order type
HVS.</documentation>
 </annotation>
 </element>

 <complexType name="HVSOrderParamsType">
 <annotation>
 <documentation xml:lang="en">Data type for additional order parameters regarding order
type HVS.</documentation>
 </annotation>
 <sequence>
 <group ref="ebics:HVRequestStructure"/>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <group name="HVRequestStructure">
 <annotation>
 <documentation xml:lang="en">Standard request structure for HVx orders (HVD, HVT, HVE,
HVS).</documentation>
 </annotation>
 <sequence>
 <annotation>
 <documentation xml:lang="en">Standard request data.</documentation>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 197
 Status: Final Version 2.4.2

 </annotation>
 <element name="PartnerID" type="ebics:PartnerIDType">
 <annotation>
 <documentation xml:lang="en">Customer ID of the presenter of the selected
order.</documentation>
 </annotation>
 </element>
 <element name="OrderType" type="ebics:OrderTBaseType">
 <annotation>
 <documentation xml:lang="en">Order type of the selected order.</documentation>
 </annotation>
 </element>
 <element name="OrderID" type="ebics:OrderIDType">
 <annotation>
 <documentation xml:lang="en">Order ID of the selected order.</documentation>
 </annotation>
 </element>
 </sequence>
 </group>

8.3.5.1.3 Meaning of the XML elements/attributes

XML element/

attribute
Data type # Meaning Example

HVSOrderParams ebics:HVSOrderParamsType
(complex)

1 Order parameters for
order type HVS

- (complex)

PartnerID ebics:PartnerIDType
(token, maxLength=35,
pattern="[a-zA-Z0-
9,=]{1,35})

1 Customer ID of the
initiating party.

“CUSTM001”

OrderType ebics:OrderTBaseType
(token, length=3,
pattern="[A-Z0-9]{3}")

1 Order type of the order
that is to be cancelled in
VEU processing

“IZV”

OrderID ebics:OrderIDType
(token, fixLength=4)

1 Order number of the order
that is to be cancelled in
VEU processing

“OR01”

8.3.5.1.4 Example XML (abridged)
<?xml version="1.0" encoding="UTF-8"?>
<ebicsRequest
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_request.xsd"
 Version="H003" Revision="1">
 <header authenticate="true">
 <static>
 <!-- […] -->
 <OrderDetails>
 <OrderType>HVS</OrderType>
 <OrderID>HO05</OrderID>
 <OrderAttribute>UZHNN</OrderAttribute>
 <HVSOrderParams>
 <PartnerID>CUST001</PartnerID>
 <OrderType>IZV</OrderType>
 <OrderID>OR01</OrderID>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 198
 Status: Final Version 2.4.2

 </HVSOrderParams>
 </OrderDetails>
 <!-- […] -->
 </static>
 <!-- […] -->
 </header>
 <!-- […] -->
</ebicsRequest>

8.3.5.2 HVS response
The HVS response does not contain any VEU-specific data.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 199
 Status: Final Version 2.4.2

9 “Other” EBICS order types
The following sections contain descriptions of the following order types:

 HAA (download retrievable order types) [optional]

 HPD (download bank parameter)

 HKD (download customer’s customer and subscriber information) [optional]

 HTD (download subscriber’s customer and subscriber information) [optional]

 HEV (download supported EBICS versions)

 FUL (upload file with any format) [optional]

 FDL (download file with any format) [optional]

9.1 HAA (download retrievable order types) [optional]
With HAA, the subscriber may retrieve a list of order types for which updated customer data
are ready for download in the bank system.

HAA is an order type of type “download”.

9.1.1 HAA request
The HAA request does not contain specific data that goes beyond that named in the general
transaction description (see Chapter 5.6.1.1).

9.1.2 HAA response
Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for
HAA: HAAResponseOrderData

9.1.2.1.1 XML schema (graphic representation)

Diagram 87: HAAResponseOrderData

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 200
 Status: Final Version 2.4.2

9.1.2.1.2 XML schema (textual representation)

 <element name="HAAResponseOrderData" type="ebics:HAAResponseOrderDataType"
substitutionGroup="ebics:EBICSOrderData">
 <annotation>
 <documentation xml:lang="en">Order data for order type HAA (response: receive order types
which provide downloadable data).</documentation>
 </annotation>
 </element>

 <complexType name="HAAResponseOrderDataType">
 <annotation>
 <documentation xml:lang="en">Data type for order data of type HAA (response: receive
order types which provide downloadable data).</documentation>
 </annotation>
 <sequence>
 <element name="OrderTypes" type="ebics:OrderTListType">
 <annotation>
 <documentation xml:lang="en">List of order types which provide downloadable order
data.</documentation>
 </annotation>
 </element>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

9.1.2.1.3 Meaning of the XML elements/attributes

XML element/

attribute
Data type # Meaning Example

HAAResponse»
OrderData

ebics:HAAResponse»
OrderDataType (complex)

1 Order data for order type
HAA

- (complex)

OrderTypes ebics:OrderTListType
(list<OrderTBaseType>
list<token, length=3,

pattern="[A-Z0-9]{3}">)

1 List of order types for
which data is available

“STA PTK“

9.1.2.1.4 Example XML
<?xml version="1.0" encoding="UTF-8"?>
<HAAResponseOrderData
 xmlns="http://www.ebics.org/H003"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_orders.xsd">
 <OrderTypes>STA PTK</OrderTypes>
</HAAResponseOrderData>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 201
 Status: Final Version 2.4.2

9.2 HPD (download bank parameters)
With HPD, the subscriber can receive information relating to the financial institution’s specific
access (AccessParams) and protocol parameters (ProtocolParams).

The access parameters include:

 URL: URL or IP address for electronic access to the financial institution. The optional
attribute valid_from specifies the commencement of validity (timestamp) of the
specification

 Institute: Designation of the financial institution

 HostID (optional): EBICS host ID of the bank system.

In the case of the protocol parameters, the following information is transmitted:

 Version: Permitted versions (listed in each case) for EBICS protocol (Protocol),
identification and authentication (Authentication), encryption (Encryption) and
signature (Signature)

 Recovery (optional): Support of transaction recovery of (@supported)

 PreValidation (optional): Support of preliminary verification (@supported). If this
parameter is set, the financial institution merely ensures that the subscriber can transmit
data to the financial institution within the framework of preliminary verification. However,
the financial institution is not obliged to comprehensively verify this data.

 X509Data (optional): Support for X.509 data such as e.g. certificates (@supported)
from the XML field ebicsRequest/body/X509Data. Furthermore, the financial
institution can specify whether it persistently archives the subscriber’s X.509 data in the
state “Ready” (@persistent). In this event, the subscriber does not have to transmit
them anew with each transaction initialisation. If not specified, the financial institution
does not support persistent X.509 data maintenance.
For the persistent storage of X.509 data, the financial institution must store the
transmitted certificate data within the framework of subscriber initialisation, and make it
accessible to the financial institution’s own transaction administration.

 ClientDataDownload (optional): Support of order types HKD (download customer
data) and HTD (download subscriber data) (@supported). See Chapter 9.3 (HKD) and
9.4 (HTD)

 DownloadableOrderData (optional): Support of order type HAA (download retrievable
order types) (@supported). See Chapter 9.1 for details.

The following standard procedure is defined for all optional elements of the protocol
parameters – insofar as not explicitly stated otherwise:

 If the parameter is missing, the subscriber MUST evaluate this as meaning that the
corresponding functionality is not supported, i.e. the result corresponds to
Parameter@supported="false"

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 202
 Status: Final Version 2.4.2

 If the parameter is specified, but the attribute is missing, the subscriber MUST evaluate
this as support of the corresponding functionality, i.e. the result corresponds to
Parameter@supported="true”.

This specification simplifies the inter-operability of customer product and bank system: On
the one hand, it is ensured that a financial institution that does not support a function does
not also have to explicitly state that it is “not supported” in the bank parameters. On the other
hand, it is assumed that if a functionality is named then it is also supported, which means
that in this case the @supported flag can be dispensed with.

HPD is an order type of type “download”.

9.2.1 HPD request
The HPD request does not contain specific data that goes beyond that named in the general
transaction description.

9.2.2 HPD response
The HPD response contains the bank parameters, divided into access parameters
(AccessParams) and protocol parameters (ProtocolParams).

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for
HPD: HPDResponseOrderData

9.2.2.1.1 XML schema (graphic representation)

Diagram 88: HPDResponseOrderData

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 203
 Status: Final Version 2.4.2

Diagram 89: HPDAccessParamsType (to AccessParams)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 204
 Status: Final Version 2.4.2

Diagram 90: HPDProtocolParamsType (to ProtocolParams)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 205
 Status: Final Version 2.4.2

Diagram 91: HPDVersionType (to Version)

9.2.2.1.2 XML schema (textual representation)

 <element name="HPDResponseOrderData" type="ebics:HPDResponseOrderDataType"
substitutionGroup="ebics:EBICSOrderData">
 <annotation>
 <documentation xml:lang="en">Order data for order type HPD (response: receive bank
parameters).</documentation>
 </annotation>
 </element>

 <complexType name="HPDResponseOrderDataType">
 <annotation>
 <documentation xml:lang="en">Data type for order data of type HPD (response: receive bank
parameters).</documentation>
 </annotation>
 <sequence>
 <element name="AccessParams" type="ebics:HPDAccessParamsType">
 <annotation>
 <documentation xml:lang="en">EBICS access parameters.</documentation>
 </annotation>
 </element>
 <element name="ProtocolParams" type="ebics:HPDProtocolParamsType">
 <annotation>
 <documentation xml:lang="en">Parameters regarding the EBICS protocol.</documentation>
 </annotation>
 </element>
 </sequence>
 </complexType>

 <complexType name="HPDAccessParamsType">
 <annotation>
 <documentation xml:lang="en">Data type for HPD's access parameters.</documentation>
 </annotation>
 <sequence>
 <element name="URL" maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">institute-specific IP address / URL.</documentation>
 </annotation>
 <complexType>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 206
 Status: Final Version 2.4.2

 <simpleContent>
 <extension base="anyURI">
 <attribute name="valid_from" type="ebics:TimestampType">
 <annotation>
 <documentation xml:lang="en">Start of validity for the given URL /
IP.</documentation>
 </annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="Institute">
 <annotation>
 <documentation xml:lang="en">Name of the institute.</documentation>
 </annotation>
 <simpleType>
 <restriction base="normalizedString">
 <maxLength value="80"/>
 </restriction>
 </simpleType>
 </element>
 <element name="HostID" type="ebics:HostIDType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">ID of the bank's server.</documentation>
 </annotation>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="HPDProtocolParamsType">
 <annotation>
 <documentation xml:lang="en">Data type for HPD's parameters regarding the EBICS
protocol.</documentation>
 </annotation>
 <sequence>
 <element name="Version" type="ebics:HPDVersionType">
 <annotation>
 <documentation xml:lang="en">Specification of supported versions.</documentation>
 </annotation>
 </element>
 <element name="Recovery" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Parameter denoting the recovery function (recovery of
aborted transmissions).</documentation>
 </annotation>
 <complexType>
 <attributeGroup ref="ebics:OptSupportFlag"/>
 </complexType>
 </element>
 <element name="PreValidation" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Parameter denoting the pre-validation (beyond
transmission of signatures).</documentation>
 </annotation>
 <complexType>
 <attributeGroup ref="ebics:OptSupportFlag"/>
 </complexType>
 </element>
 <element name="X509Data" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Parameter denoting the X.509
functionality.</documentation>
 </annotation>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 207
 Status: Final Version 2.4.2

 <complexType>
 <attributeGroup ref="ebics:OptSupportFlag"/>
 <attribute name="persistent" type="boolean" use="optional" default="false">
 <annotation>
 <documentation xml:lang="en">Will the user's X.509 data be stored persistently on
server side?</documentation>
 </annotation>
 </attribute>
 </complexType>
 </element>
 <element name="ClientDataDownload" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Parameter denoting the download of customer and user
data (order types HKD/HTD).</documentation>
 </annotation>
 <complexType>
 <attributeGroup ref="ebics:OptSupportFlag"/>
 </complexType>
 </element>
 <element name="DownloadableOrderData" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Parameter denoting the reception of order types which
provide downloadable order data (order type HAA).</documentation>
 </annotation>
 <complexType>
 <attributeGroup ref="ebics:OptSupportFlag"/>
 </complexType>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="HPDVersionType">
 <annotation>
 <documentation xml:lang="en">Data type for HPD's version information.</documentation>
 </annotation>
 <sequence>
 <element name="Protocol">
 <annotation>
 <documentation xml:lang="en">supported protocol versions of EBICS
(H...).</documentation>
 </annotation>
 <simpleType>
 <list itemType="ebics:ProtocolVersionType"/>
 </simpleType>
 </element>
 <element name="Authentication">
 <annotation>
 <documentation xml:lang="en">supported versions of authentication
(X...).</documentation>
 </annotation>
 <simpleType>
 <list itemType="ebics:AuthenticationVersionType"/>
 </simpleType>
 </element>
 <element name="Encryption">
 <annotation>
 <documentation xml:lang="en">supported versions of encryption (E...).</documentation>
 </annotation>
 <simpleType>
 <list itemType="ebics:EncryptionVersionType"/>
 </simpleType>
 </element>
 <element name="Signature">
 <annotation>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 208
 Status: Final Version 2.4.2

 <documentation xml:lang="en">supported versions of signatures (A...).</documentation>
 </annotation>
 <simpleType>
 <list itemType="ebics:SignatureVersionType"/>
 </simpleType>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <attributeGroup name="OptSupportFlag">
 <annotation>
 <documentation xml:lang="en">optional support flag, default = true.</documentation>
 </annotation>
 <attribute name="supported" type="boolean" use="optional" default="true"/>
 <anyAttribute namespace="##targetNamespace" processContents="strict"/>
 </attributeGroup>

9.2.2.1.3 Meaning of the XML elements/attributes

XML element/

attribute
Data type # Meaning Example

HPDResponse»
OrderData

ebics:HPDResponse»
OrderDataType (complex)

1 Order data for order type
HPD

- (complex)

AccessParams ebics:HPDAccessParams»
Type (complex)

1 Access parameters - (complex)

ProtocolParams ebics:HPDProtocol»
ParamsType (complex)

1 Protocol parameters - (complex)

URL anyURI 1..∞ Institute-specific IP address
/ URL

“www.the-
bank.de”

URL@valid_from ebics:TimestampType
(dateTime)

0..1 Commencement of validity
for the specified URL/IP; if
not specified, the URL/IP is
valid with immediate effect

“2005-02-28T»
15:30:45.123Z“

Institute normalizedString,
maxLength=80

1 Financial institution
designation

“The Bank“

HostID ebics:HostIDType
(token,
maxLength=35)

0..1 EBICS bank system ID “EBIXHOST“

Version ebics:HPDVersionType
(complex)

1 Specification of supported
versions

- (complex)

Protocol list<ebics:Protocol»
VersionType>
(list<token,
length=4,
pattern="H\d{3}">)

1 List of supported EBICS
protocol versions

“H003“

Authentication list<ebics:Authentica»
tionVersionType>
(list<token,
length=4,
pattern= "X\d{3}">)

1 List of supported
identification and
authentication versions

“X002”

Encryption list<ebics:Encryption»
VersionType>
(list<token,
length=4,

1 List of supported
encryption versions

“E002”

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 209
 Status: Final Version 2.4.2

pattern="E\d{3}">)
Signature list<ebics:Signature»

VersionType>
(list<token,
length=4,
pattern="A\d{3}">)

1 List of supported ES
versions

“A004 A005
A006“

Recovery - (complex) 0..1 Parameters for recovery
function (recovery of
broken connections); if not
specified, the function is
not supported.

- (complex)

Recovery»
@supported

boolean 0..1 Is recovery supported?
(Default=true)

“true”

PreValidation - (complex) 0..1 Parameters for preliminary
verification; if not specified,
the function is not
supported

- (complex)

PreValidation»
@supported

boolean 0..1 Is preliminary verification
supported? (Default=true)

“true”

X509Data - (complex) 0..1 Parameters for X.509 data;
if not specified, the function
is not supported

- (complex)

X509Data»
@supported

boolean 0..1 Is X.509 data supported?
(Default=true)

“false“

X509Data»
@persistent

boolean 0..1 Is the subscriber’s X.509
data persistently stored at
the server end?
(Default=false)

“false“

ClientData»
Download

- (complex) 0..1 Parameters for
downloading customer and
subscriber data
(HKD/HTD); if not
specified, the function is
not supported

“true”

ClientData»
Download»
@supported

boolean 0..1 Are order types HKD/HTD
supported? (Default=true)

“true”

Downloadable»
OrderData

- (complex) 0..1 Parameters for retrieving
order types for which order
data is available (HAA); if
not specified, the function
is not supported

- (complex)

Downloadable»
OrderData»
@supported

boolean 0..1 Is order type HAA
supported? (Default=true)

“true”

9.2.2.1.4 Example XML
<?xml version="1.0" encoding="UTF-8"?>
<HPDResponseOrderData
 xmlns="http://www.ebics.org/H003"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_orders.xsd">
 <AccessParams>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 210
 Status: Final Version 2.4.2

 <URL>http://www.the-bank.de</URL>
 <URL valid_from="2005-02-15T15:30:45.123Z">192.168.0.1</URL>
 <Institute>The Bank</Institute>
 <HostID>EBIXHOST</HostID>
 </AccessParams>
 <ProtocolParams>
 <Version>
 <Protocol>H003</Protocol>
 <Authentication>X002</Authentication>
 <Encryption>E001</Encryption>
 <Signature>A004 A005</Signature>
 </Version>
 <Recovery supported="true"/>
 <PreValidation supported="true"/>
 <X509Data supported="false"/>
 < supported="true"/>
 <DownloadableOrderData supported="true"/>
 </ProtocolParams>
</HPDResponseOrderData>

9.3 HKD (retrieve customer’s customer and subscriber information)
[optional]

With HKD, the subscriber can retrieve information stored by the bank relating to his company
and all associated subscribers (including themselves).

The bank's response contains a list of the accounts of the customer.
An account is only included in the HKD response if at least one of the following conditions is
complied with:

1. The customer possesses an agreement on the provision of bank statements for the
account.

2. At least one of the customer's subscribers is authorised to sign for the account.
It is not relevant whether the account holder is the same customer the HKD is retrieved for.

HKD is an order type of type “download”.

9.3.1 HKD request
The HKD request does not contain specific data that goes beyond that named in the general
transaction description.

9.3.2 HKD response
Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for
HKD: HKDResponseOrderData

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 211
 Status: Final Version 2.4.2

9.3.2.1.1 XML schema (graphic representation)

Diagram 92: HKDResponseOrderData

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 212
 Status: Final Version 2.4.2

Diagram 93: PartnerInfoType (to PartnerInfo)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 213
 Status: Final Version 2.4.2

Diagram 94: AddressInfoType (to AddressInfo)

Diagram 95: BankInfoType (to BankInfo)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 214
 Status: Final Version 2.4.2

Diagram 96: AuthOrderInfoType (to OrderInfo)

Diagram 97: UserInfoType (to UserInfo)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 215
 Status: Final Version 2.4.2

Diagram 98: UserPermissionType (to Permission)

9.3.2.1.2 XML schema (textual representation)

 <element name="HKDResponseOrderData" type="ebics:HKDResponseOrderDataType"
substitutionGroup="ebics:EBICSOrderData">
 <annotation>
 <documentation xml:lang="en">Order data for order type HKD (response: receive customer-
based information on the customer and the customer's users).</documentation>
 </annotation>
 <key name="HKDAccountKey">
 <annotation>
 <documentation xml:lang="de">Key for the identification of the account
</documentation>
 </annotation>
 <selector xpath="./ebics:PartnerInfo/ebics:AccountInfo"/>
 <field xpath="@ID"/>
 </key>
 <keyref name="HKDAccountRef" refer="ebics:HKDAccountKey">
 <annotation>
 <documentation xml:lang="de">Reference to the account identification keys
</documentation>
 </annotation>

 <selector xpath="./ebics:UserInfo/ebics:Permission"/>
 <field xpath="AccountID"/>
 </keyref>
 </element>

 <complexType name="HKDResponseOrderDataType">

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 216
 Status: Final Version 2.4.2

 <annotation>
 <documentation xml:lang="en">Data type for order data of type HKD (response: receive
customer-based information on the customer and the customer's users).</documentation>
 </annotation>
 <sequence>
 <element name="PartnerInfo" type="ebics:PartnerInfoType">
 <annotation>
 <documentation xml:lang="en">Customer data.</documentation>
 </annotation>
 </element>
 <element name="UserInfo" type="ebics:UserInfoType" maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">User data.</documentation>
 </annotation>
 </element>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="PartnerInfoType">
 <annotation>
 <documentation xml:lang="en">Data type for customer data with regard to distributed
signatures (order types HKD, HTD).</documentation>
 </annotation>
 <sequence>
 <element name="AddressInfo" type="ebics:AddressInfoType">
 <annotation>
 <documentation xml:lang="en">Information about the customer's
address.</documentation>
 </annotation>
 </element>
 <element name="BankInfo" type="ebics:BankInfoType">
 <annotation>
 <documentation xml:lang="en">Information about the customer's banking access
parameters.</documentation>
 </annotation>
 </element>
 <element name="AccountInfo" minOccurs="0" maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">Information about the customer's
accounts.</documentation>
 </annotation>
 <complexType>
 <complexContent>
 <extension base="ebics:AccountType">
 <sequence>
 <element name="UsageOrderTypes" type="ebics:OrderTListType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">List containing the order types which this
account is restricted to; if omitted, the account is unrestricted; if the list is empty, the
account is blocked for any order type.</documentation>
 </annotation>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 <attribute name="ID" type="ebics:AccountIDType" use="required">
 <annotation>
 <documentation xml:lang="en">Unique identification code for this
account.</documentation>
 </annotation>
 </attribute>
 </extension>
 </complexContent>
 </complexType>
 </element>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 217
 Status: Final Version 2.4.2

 <element name="OrderInfo" type="ebics:AuthOrderInfoType" maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">Information about order types which the customer is
authorised to use.</documentation>
 </annotation>
 </element>
 </sequence>
 </complexType>

 <complexType name="AddressInfoType">
 <annotation>
 <documentation xml:lang="en">Data type for address information with regard to distributed
signatures (order types HKD, HTD).</documentation>
 </annotation>
 <sequence>
 <element name="Name" type="ebics:NameType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">User's name.</documentation>
 </annotation>
 </element>
 <element name="Street" type="ebics:NameType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Street and house number.</documentation>
 </annotation>
 </element>
 <element name="PostCode" type="token" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Postal code.</documentation>
 </annotation>
 </element>
 <element name="City" type="ebics:NameType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">City.</documentation>
 </annotation>
 </element>
 <element name="Region" type="ebics:NameType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Region / province / federal state.</documentation>
 </annotation>
 </element>
 <element name="Country" type="ebics:NameType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Country.</documentation>
 </annotation>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="BankInfoType">
 <annotation>
 <documentation xml:lang="en">Data type for bank information with regard to distributed
signatures (order types HKD, HTD).</documentation>
 </annotation>
 <sequence>
 <element name="HostID" type="ebics:HostIDType">
 <annotation>
 <documentation xml:lang="en">ID of the bank's host system.</documentation>
 </annotation>
 </element>
 <element ref="ebics:Parameter" minOccurs="0" maxOccurs="unbounded"/>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="AuthOrderInfoType">

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 218
 Status: Final Version 2.4.2

 <annotation>
 <documentation xml:lang="en">Data type for order authorisation information with regard to
distributed signatures (order types HKD, HTD).</documentation>
 </annotation>
 <sequence>
 <element name="OrderType" type="ebics:OrderTBaseType">
 <annotation>
 <documentation xml:lang="en">Order type.</documentation>
 </annotation>
 </element>
 <element name="TransferType" type="ebics:TransferType">
 <annotation>
 <documentation xml:lang="en">Transfer type, i.e. direction of the transmission of
order data (upload/download).</documentation>
 </annotation>
 </element>
 <element name="OrderFormat" type="ebics:OrderFormatType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Format specification of the order data (e.g.
"DTAZV").</documentation>
 </annotation>
 </element>
 <element name="Description" type="ebics:OrderDescriptionType">
 <annotation>
 <documentation xml:lang="en">Short description of the order type.</documentation>
 </annotation>
 </element>
 <element name="NumSigRequired" type="nonNegativeInteger" default="0" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Minimum number of digital signatures needed to authorise
an order of the given type (default is none, if omitted).</documentation>
 </annotation>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="UserInfoType">
 <annotation>
 <documentation xml:lang="en">Data type for user information with regard to distributed
signatures (order types HKD, HTD).</documentation>
 </annotation>
 <sequence>
 <element name="UserID">
 <annotation>
 <documentation xml:lang="en">User ID.</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="ebics:UserIDType">
 <attribute name="Status" type="ebics:UserStatusType" use="required">
 <annotation>
 <documentation xml:lang="en">The user's numeric status.</documentation>
 </annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="Name" type="ebics:NameType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">The user's name.</documentation>
 </annotation>
 </element>
 <element name="Permission" type="ebics:UserPermissionType" maxOccurs="unbounded">

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 219
 Status: Final Version 2.4.2

 <annotation>
 <documentation xml:lang="en">Information about the user's
permissions.</documentation>
 </annotation>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="UserPermissionType">
 <annotation>
 <documentation xml:lang="en">Datatype for user permissions with regard to distributed
signatures (order types HKD, HTD).</documentation>
 </annotation>
 <sequence>
 <element name="OrderTypes" type="ebics:OrderTListType">
 <annotation>
 <documentation xml:lang="en">List of order types which the user's permission belongs
to.</documentation>
 </annotation>
 </element>
 <element name="AccountID" type="ebics:AccountIDType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Identification codes of the affected
accounts.</documentation>
 </annotation>
 </element>
 <element name="MaxAmount" type="ebics:AmountType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Maximum total amount which the user's permission is
valid for.</documentation>
 </annotation>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="AuthorisationLevel" type="ebics:AuthorisationLevelType">
 <annotation>
 <documentation xml:lang="en">Authorisation level of the user who signed the order; to
be omitted for orders of type "download".</documentation>
 </annotation>
 </attribute>
 <anyAttribute namespace="##targetNamespace" processContents="strict"/>
 </complexType>

 <complexType name="AccountType">
 <annotation>
 <documentation xml:lang="en">Data type for detailed account information.</documentation>
 </annotation>
 <sequence>
 <element name="AccountNumber" maxOccurs="2">
 <annotation>
 <documentation xml:lang="en">Account number (German format and/or
international=IBAN).</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="ebics:AccountNumberType">
 <attribute name="international" type="boolean" use="optional" default="false">
 <annotation>
 <documentation xml:lang="en">Is the account number specified using the
national=German or the international=IBAN format?</documentation>
 </annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 220
 Status: Final Version 2.4.2

 </element>
 <element name="BankCode" maxOccurs="2">
 <annotation>
 <documentation xml:lang="en">Bank code (German and/or international=SWIFT-BIC
format).</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="ebics:BankCodeType">
 <attribute name="international" type="boolean" use="optional" default="false">
 <annotation>
 <documentation xml:lang="en">Is the bank code specified using the
national=German or the international=SWIFT-BIC format?</documentation>
 </annotation>
 </attribute>
 <attribute name="Prefix" type="ebics:BankCodePrefixType" use="optional">
 <annotation>
 <documentation xml:lang="en">National=German prefix for bank
codes.</documentation>
 </annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="AccountHolder" type="ebics:AccountHolderType" minOccurs="0">
 <annotation>
 <documentation xml:lang="en">Name of the account holder.</documentation>
 </annotation>
 </element>
 </sequence>
 <attribute name="Currency" type="ebics:CurrencyBaseType" use="optional" default="EUR">
 <annotation>
 <documentation xml:lang="en">Currency code for this account.</documentation>
 </annotation>
 </attribute>
 <attribute name="Description" type="ebics:AccountDescriptionType" use="optional">
 <annotation>
 <documentation xml:lang="en">Description of this account.</documentation>
 </annotation>
 </attribute>
 </complexType>

 <complexType name="AmountType">
 <annotation>
 <documentation xml:lang="en">Data type for an amount including a currency attribute
(defaults to "EUR").</documentation>
 </annotation>
 <simpleContent>
 <extension base="ebics:AmountValueType">
 <attribute name="Currency" type="ebics:CurrencyBaseType" use="optional" default="EUR">
 <annotation>
 <documentation xml:lang="en">Currency code, default setting is
"EUR".</documentation>
 </annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>

 <element name="Parameter">
 <annotation>
 <documentation xml:lang="en">generic key-value parameters.</documentation>
 </annotation>
 <complexType>
 <sequence>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 221
 Status: Final Version 2.4.2

 <element name="Name" type="token">
 <annotation>
 <documentation xml:lang="en">Name of the parameter (=key).</documentation>
 </annotation>
 </element>
 <element name="Value">
 <annotation>
 <documentation xml:lang="en">Value of the parameter.</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="anySimpleType">
 <attribute name="Type" type="NCName" use="optional" default="string">
 <annotation>
 <documentation xml:lang="en">XML type of the parameter value (default is
"string").</documentation>
 </annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>

9.3.2.1.3 Meaning of the XML elements/attributes

XML element/

attribute
Data type # Meaning Example

HKDResponse»
OrderData

ebics:HKDResponse»
OrderDataType (complex)

1 Order data for order type
HKD

- (complex)

PartnerInfo ebics:PartnerInfoType
(complex)

1 Customer data - (complex)

AddressInfo ebics:AddressInfoType 1 Customer’s address
information

- (complex)

Name (in
AddressInfo)

ebics:NameType
(normalizedString)

0..1 Customer’s name “John Doe“

Street ebics:NameType
(normalizedString)

0..1 Customer’s street and house
number

“Elmstreet 1“

PostCode token 0..1 Customer’s post code “12345“
City ebics:NameType

(normalizedString)
0..1 Customer’s city “Smallville“

Region ebics:NameType
(normalizedString)

0..1 Customer’s region / Federal
State

“Virginia“

Country ebics:NameType
(normalizedString)

0..1 Customer’s country “USA“

BankInfo ebics:BankInfoType
(complex)

1 Information on customer’s
financial institution
connection

- (complex)

HostID ebics:HostIDType
(token,
maxLength=35

1 EBICS bank system ID “EBIXHOST“

Parameter Reference to global element
(complex)

0..
∞

Structure for generic key
value parameters with

- (complex)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 222
 Status: Final Version 2.4.2

optional type specification
AccountInfo ebics:AccountType

(complex)
0..
∞

Information on customer’s
accounts. An account is only
listed in the KHD response if
the customer possesses an
agreement on the provision
for it, OR if at least one of the
customer's subscribers is
authorised to sign for the
account. The account holder
does not have to be the same
customer as the one the HKD
is retrieved for.

- (complex)

AccountInfo»
@Currency

ebics:CurrencyBaseTyp
e
(token, length=3)

0..1 Currency code for the
account in question,
according to ISO 4127; if not
specified, “EUR” is assumed

“EUR”

Description ebics:Account»
DescriptionType
(normalizedString)

0..1 Textual description of the
account

“Giro
account“

AccountInfo@ID ebics:AccountIDType
(token,
maxLength=64)

1 Unambiguous account
identification code

“ABCDEFG»
abcdefg»
1234567890“

- - 1..2 Information on the account
number: AccountNumber
and/or
NationalAccountNumber

-

AccountNumber ebics:AccountNumber»
Type
(token,
maxLength=40,
pattern="\d{3,10}|
([A-Z]{2}\d{2}
[A-Za-z0-9]{3,30})")

1 Account number (German
format or international as
IBAN)

„123456789“

AccountNumber»
@international

boolean 0..1 Is the account number given
in national=German (false,
default) or in
international=IBAN format
(true)?

“false“

National»
AccountNumber

ebics:National»
AccountNumberType
(token,
maxLength=40)

1 Account number in free
format (for national account
numbers which comply
neither to German nor
international standards)

„1234567890
123456“

National»
Account»
Number@format

token 1 Description of the format of
the account number

„other“

- - 1..2 Information on the bank code:
BankCode and/or
NationalBankCode

-

BankCode ebics:BankCodeType
(token,
maxLength=11,

1..2 Bank sort code (German
format or international as
SWIFT-BIC)

„50010070“

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 223
 Status: Final Version 2.4.2

pattern="\d{8}|
([A-Z]{6}[A-Z0-9]{2}
([A-Z0-9]{3})?)")

BankCode»
@international

boolean 0..1 Is the bank sort code given in
national=German (false,
default) or in
international=SWIFT-BIC
format (true)?

“false“

BankCode»
@Prefix

ebics:BankCodePrefix»
Type
(token, length=2)

0..1 National bank sort code prefix “DE“

NationalBank»
Code

ebics:National»
BankCodeType
(token,
maxLength=30)

1 Bank code in free format
(neither German format nor
SWIFT-BIC)

„1234567890
12“

NationalBank»
Code@format

token 1 Description of the bank code
format

“other”

AccountHolder ebics:AccountHolder»
Type
(normalizedString)

0..1 Name of the account holder “John Doe“

UsageOrder»
Types

ebics:OrderTListType
(list<ebics:»
OrderTBaseType>
list<token,

length=3, pattern=
"[A-Z0-9]{3}">)

0..1 List of order restrictions for
the account in question; if not
specified, there are no
restrictions as to order type
for the account in question; if
the list is empty, the account
in question has not been
activated for any order types

“STA IZV”

OrderInfo ebics:OrderInfoType
(complex)

1..
∞

Information on the order
types assigned to the
customer

- (complex)

OrderType ebics:OrderTBaseType
(token, length=3,
pattern="[A-Z0-
9]{3}")

1 The order type assigned to
the customer

“IZV”

TransferType ebics:TransferType
(token: "Upload",
"Download")

1 Transfer type (“Upload” =
order data from client to
server, “Download” = order
data from server to client

“Upload“

OrderFormat ebics:OrderFormatType
(token,
maxLength=8)

0..1 Order data format “DTAUS“

Description ebics:Order»
DescriptionType
(normalizedString,
maxLength=128)

1 Textual description of the
order type

“Domestic
transfer“

NumSig»
Required

nonNegativeInteger 0..1 Number of ES’s required for
the order type; default=0,
unless specified

2

UserInfo ebics:UserInfoType
(complex)

1..
∞

Subscriber information - (complex)

UserID ebics:UserIDType
(token,
maxLength=35,

1 Subscriber ID “USR100“

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 224
 Status: Final Version 2.4.2

pattern="[a-zA-Z0-
9,=]{1,35})

UserID@Status ebics:UserStatusType
(nonNegativeInteger
, maxInclusive=99)

1 Subscriber’s state:
1: Ready: Subscriber is
permitted access
2: New: Initial state after
establishing the subscriber
for EBICS ("established")
3: Partly initialised (INI):
Subscriber has sent INI file,
yet no HIA
4:Partly initialised (HIA):
Subscriber has sent HIA
order, but no INI file yet
5: Initialised: Subscriber has
sent HIA order and INI file
6: Suspended (several failed
attempts), new initialisation
via INI and HIA possible)
7: New_FTAM: Subscriber is
established for EBICS and for
FTAM in the state "Ready"
with an EBICS-compliant
signature key (A004)
8: Suspended (by the
customer's SPR order), new
initialisation via INI and HIA
possible
9: Suspended (by bank), new
initialisation via INI and HIA is
not possible, suspension can
only be revoked by the bank

1

Name (in
UserInfo)

ebics:NameType
(normalizedString)

0..1 Subscriber’s name “John Doe“

Permission ebics:PermissionType
(complex)

1..
∞

Information on the
subscriber’s authorisations

- (complex)

Permission»
@Authorisa»
tionLevel

ebics:Authorisation»
LevelType
(token, length=1:
"E", "A", "B", "T")

0..1 Signature class for which the
subscriber is authorised:
“E“=Individual signature,
“A“=First signature,
“B“=Second signature,
“T“=Transport signature.
Not to be specified in the
case of download order types

“A“

OrderTypes ebics:OrderTListType
(list<OrderTBase»
Type>
list<token,

length=3, pattern=
"[A-Z0-9]{3}">)

1 List of order types for which
the subscriber’s signature
authorisation is valid
separated by a blank
character

“IZV AZV”

AccountID ebics:AccountIDType
(token,
maxLength=64)

0..
∞

Reference to the identification
code of an authorised
account

“ABCDEFG»
abcdefg»
1234567890“

MaxAmount ebics:AmountType
(ebics:AmountValue»
Type

0..1 Amount upper threshold up to
which the subscriber’s
signature authorisation is

5000.00

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 225
 Status: Final Version 2.4.2

decimal,
totalDigits=24,
fractionDigits=4)

valid (Validity of the reference
is enforced by the EBICS
XML schema)

MaxAmount»
@Currency

ebics:CurrencyBaseTyp
e
(token, length=3)

0..1 Currency of the maximum
amount, according to ISO
4127; if not specified, “EUR”
is assumed

“EUR”

Note on the clarification:
The allocation of account authorisations for the particular subscribers is effected by means of
the element UserInfo/Permission in the following way:
If the element AccountID is not transferred with UserInfo/Permission, the order types
transferred with UserInfo/Permission apply automatically to all accounts of the
respective customer.
However, if the element AccountID is transferred with UserInfo/Permission, the order
type authorisations transferred with the respective element
UserInfo/Permission/OrderTypes apply exclusively to the account IDs referenced via
AccountID.

9.3.2.1.4 Example XML
<?xml version="1.0" encoding="UTF-8"?>
<HKDResponseOrderData
 xmlns="http://www.ebics.org/H003"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_orders.xsd">
 <PartnerInfo>
 <AddressInfo>
 <Name>John Doe</Name>
 <Street>Elmstreet 1</Street>
 <PostCode>12345</PostCode>
 <City>Smallville</City>
 <Region>Virginia</Region>
 <Country>USA</Country>
 </AddressInfo>
 BankInfo
 <HostID>EBIXHOST</HostID>
 </BankInfo>
 <AccountInfo ID="accid01" Currency="EUR" Description="Girokonto">
 <AccountNumber international="false">123456789</AccountNumber>
 <BankCode international="false" Prefix="DE">50010070</BankCode>
 <AccountHolder>John Doe</AccountHolder>
 </AccountInfo>
 <OrderInfo>
 <OrderType>STA</OrderType>
 <TransferType>Download</TransferType>
 <Description>Download SWIFT daily accounts</Description>
 </OrderInfo>
 <OrderInfo>
 <OrderType>IZV</OrderType>
 <TransferType>Upload</TransferType>
 <Description>Send domestic payment transaction order</Description>
 <NumSigRequired>2</NumSigRequired>
 </OrderInfo>
 </PartnerInfo>
 <UserInfo>
 <UserID Status="1">USR100</UserID>
 <Permission>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 226
 Status: Final Version 2.4.2

 <OrderTypes>STA</OrderTypes>
 </Permission>
 </UserInfo>
 <UserInfo>
 <UserID Status="1">USR200</UserID>
 <Permission AuthorisationLevel="A">
 <OrderTypes>IZV</OrderTypes>
 <AccountID>accid01</AccountID>
 <MaxAmount Currency="EUR">6000.00</MaxAmount>
 </Permission>
 <Permission>
 <OrderTypes>STA</OrderTypes>
 </Permission>
 </UserInfo>
</HKDResponseOrderData>

9.4 HTD (retrieve subscriber’s customer and subscriber information)
[optional]

With HTD, the subscriber can retrieve information stored by the bank relating to their
company or themselves; however, in contrast to HKD they are not given information on the
company’s other subscribers.

HTD is an order type of type “download”.

9.4.1 HTD request
The HTD request does not contain specific data that goes beyond that named in the general
transaction description.

9.4.2 HTD response
Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for
HTD: HTDResponseOrderData

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 227
 Status: Final Version 2.4.2

9.4.2.1.1 XML schema (graphic representation)

Diagram 99: HTDResponseOrderData

9.4.2.1.2 XML schema (textual representation)

 <element name="HTDResponseOrderData" type="ebics:HTDReponseOrderDataType"
substitutionGroup="ebics:EBICSOrderData">
 <annotation>
 <documentation xml:lang="en">Order data for order type HTD (response: receive user-based
information on the user's customer and the user herself/himself).</documentation>
 </annotation>
 <key name="HTDAccountKey">
 <annotation>
 <documentation xml:lang="de">Key for the identification of the account
</documentation>
 </annotation>

 <selector xpath="./ebics:PartnerInfo/ebics:AccountInfo"/>
 <field xpath="@ID"/>
 </key>
 <keyref name="HTDAccountRef" refer="ebics:HTDAccountKey">
 <annotation>
 <documentation xml:lang="de">Reference to the account identification keys
</documentation>
 </annotation>
 <selector xpath="./ebics:UserInfo/ebics:Permission"/>
 <field xpath="AccountID"/>

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 228
 Status: Final Version 2.4.2

 </keyref>
 </element>

 <complexType name="HTDReponseOrderDataType">
 <annotation>
 <documentation xml:lang="en">Data type for order data of type HTD (response: receive
user-based information on the user's customer and the user herself/himself).</documentation>
 </annotation>
 <sequence>
 <element name="PartnerInfo" type="ebics:PartnerInfoType">
 <annotation>
 <documentation xml:lang="en">Customer data.</documentation>
 </annotation>
 </element>
 <element name="UserInfo" type="ebics:UserInfoType">
 <annotation>
 <documentation xml:lang="en">User data.</documentation>
 </annotation>
 </element>
 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

9.4.2.1.3 Meaning of the XML elements/attributes

XML element/

attribute
Data type # Meaning Example

HTDResponse»
OrderData

ebics:HTDResponse»
OrderDataType (complex)

1 Order data for order
type HTD

- (complex)

PartnerInfo ebics:PartnerInfoType
(complex)

1 Customer data - (complex)

UserInfo ebics:UserInfo (complex) 1 Subscriber information - (complex)

For the remaining XML elements and attributes: See order type HKD (Chapter 9.3.2.1.3).
The clarification on the allocation of account authorisations itemised in this chapter applies
as well.

9.4.2.1.4 Example XML
<?xml version="1.0" encoding="UTF-8"?>
<HTDResponseOrderData
 xmlns="http://www.ebics.org/H003"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_orders.xsd">
 <PartnerInfo>
 <AddressInfo>
 <Name>John Doe</Name>
 <Street>Elmstreet 1</Street>
 <PostCode>12345</PostCode>
 <City>Smallville</City>
 <Region>Virginia</Region>
 <Country>USA</Country>
 </AddressInfo>
 BankInfo
 <HostID>EBIXHOST</HostID>
 </BankInfo>
 <AccountInfo ID="accid01" Currency="EUR" Description="Giro account">

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 229
 Status: Final Version 2.4.2

 <AccountNumber international="false">123456789</AccountNumber>
 <BankCode international="false" Prefix="DE">50010070</BankCode>
 <AccountHolder>John Doe</AccountHolder>
 </AccountInfo>
 <OrderInfo>
 <OrderType>STA</OrderType>
 <TransferType>Download</TransferType>
 <Description>Download SWIFT daily accounts</Description>
 </OrderInfo>
 <OrderInfo>
 <OrderType>IZV</OrderType>
 <TransferType>Upload</TransferType>
 <Description>Send domestic payment transaction order</Description>
 <NumSigRequired>2</NumSigRequired>
 </OrderInfo>
 </PartnerInfo>
 <UserInfo>
 <UserID Status="1">USR100</UserID>
 <Permission>
 <OrderTypes>STA</OrderTypes>
 </Permission>
 <Permission AuthorisationLevel="A">
 <OrderTypes>IZV</OrderTypes>
 <AccountID>accid01</AccountID>
 <MaxAmount Currency="EUR">6000.00</MaxAmount>
 </Permission>
 </UserInfo>
</HTDResponseOrderData>

9.5 HEV (Download of supported EBICS versions)

By means of HEV the subscriber can inform himself of the EBICS versions supported at the
bank's end. The bank's response contains a list of supported EBICS versions and the version
of the relevant schema.

HEV is an order type of type “download”.

9.5.1 HEV request
The HEV request retrieves only EBICS versions which are supported by the bank. This
request can also be executed by subscribers not initialised. Therefore, an identification and
authentication signature is not required.
Only the following information is mandatorily transmitted along with the HEV request:

 Host ID of the EBICS bank computer

The transaction is cancelled and the return code EBICS_INVALID_HOST_ID is returned if
the transmitted HostID is unknown on the bank’s side.
Note: This return code is only allowed for the HEV request!

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 230
 Status: Final Version 2.4.2

9.5.2 HEV response
The response provides the following information:

 technical return code

 technical report text

 See document “EBICS Annex 1 Return Codes” for the value ranges of both fields. As the
EBICS version of the customer system is unknown to the bank system at the time of the
HEV request, the bank system assigns values to the fields which are defined in the most
updated EBICS version supported at the bank's end. As there is no language-attribute
available in the request, the report text is always transmitted in English.

 List of the EBICS versions supported by the bank system and names of the schema
versions relevant for these

9.5.3 Schema for HEV request / HEV response
For HEV request und HEV response the neutral schema ebics_hev.xsd is used which is
independent of the EBICS versions currently supported by the bank and can be retrieved
from the schema target location http://www.ebics.org/H000. The schema contains request
and response. In the case of a request, ebicsHEVRequest must be filled in, in case of a
response, ebicsHEVResponse must be filled in.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 231
 Status: Final Version 2.4.2

Diagram 100: HEVRequest / HEVResponse

See www.ebics.org/H000 for the textual representation of the schema ebics_hev.xsd .

9.5.3.1 Meaning of the XML elements and XML attributes of the HEV response

XML element/
attribute

Data type # Meaning Example

System
ReturnCode

ebics:SystemReturnCodeType
(complex)

1 Technical return
code and error
message (in English)

Value range
for code
according to
document
“EBICS
Annex 1
Return
Codes”

VersionNumber ebics:VersionNumberType
(complex)
(token, length=5,

pattern="[0-9]{2}[.][0-

9]{2}"

1..∞ EBICS version
supported by the
bank

02.40
(complies also
to 2.4)

ProtocolVersion ebics:ProtocolVersionType
(token, length=4)

1 Schema version
relevant for the
supported EBICS
version

H003

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 232
 Status: Final Version 2.4.2

9.5.3.2 Example XML for the HEV response

<?xml version="1.0" encoding="UTF-8"?>
<ebics:ebicsHEVResponse xsi:schemaLocation="http://www.ebics.org/H000 ebics_hev.xsd"
xmlns:ebics="http://www.ebics.org/H000" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ebics:SystemReturnCode>
 <ebics:ReturnCode>000000</ebics:ReturnCode>
 <ebics:ReportText>EBICS_OK</ebics:ReportText>
 </ebics:SystemReturnCode>
 <ebics:VersionNumber ProtocolVersion="H003">02.30</ebics:VersionNumber>
 <ebics:VersionNumber ProtocolVersion="H003">02.40</ebics:VersionNumber>
</ebics:ebicsHEVResponse>

9.6 FUL and FDL (Upload and download files with any format) [optional]

FUL is an order type of type “upload”. The standard process is described in chapter 5.5.1.
The values of the order parameters (see also 3.11)
ebicsRequest/header/static/OrderDetails, however, are of the type
FULOrderParams:

Diagram 101: FULOrderParams

XML element/
attribute

Data type # Meaning Examples

FileFormat FileFomatType

(complex)
(token

1 Describes the format of
the downloaded file

„DTAUS“ ,
„pain.001.001.02“

CountryCode Attribut zu
FileFormat

 Information on the format's
range of applications (e.g.

EU, FR, DE …

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 233
 Status: Final Version 2.4.2

country-specific formats)

FDL is an order type of type „Download“. The standard process is described in chapter 5.6.1.
The values of the order parameters (see also 3.11)
ebicsRequest/header/static/OrderDetails, however, are of the type
FDLOrderParams:

Diagram 102: FDLOrderParams

If FUL or FDL is not supported by the financial institution, the error message
EBICS_UNSUPPORTED_ORDER_TYPE is returned.
If the order format specified by FileFomat and CountryCode is not supported by the
financial institution, the error message EBICS_INVALID_ORDER_PARAMS is returned.

Note:
At the moment, order types FUL and FDL do not possess multi-bank capability. A standard
format detection catalogue is to be agreed upon first (permitted contents for the field
FileFomat).
Therefore, if FUL or FDL is used, the procedure for "other order types" has to be applied
when recording log entries in the customer protocol (see chapter 10.1.1).

The same applies to the file display in the Distributed Electronic Signature.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 234
 Status: Final Version 2.4.2

10 Customer protocols
Customer protocols document the following processes in connection with customer orders:

 Transmission of order data to and from the bank system

 Transmission of ES’s relating to existing orders to the bank system

 Post-processing of orders, insofar as this relates to signature verification, displaying order
data or errors in decompression.

Transmission of the order data from the Appendix (Chapter 13) and the document “EBICS
Annex 2 Order Types” takes place in a file-based manner. The message and error texts are
defined correspondingly: “Transmit file to bank”, “File downloaded from bank”, etc. For
compatibility reasons, these texts are used again in the EBICS context, even where
“Transmit data to bank”, “Data downloaded from bank” would be more suitable.

The new order types defined for EBICS necessitate extension of the stipulations regarding
content in the “DFÜ-Abkommen” to include customer protocols. This especially relates to
protocolling VEU processes. An overview of the new order types is given in Chapter 3.10.
Sub-sections 10.3 and 10.4 describe how protocols are kept for the corresponding orders. All
stipulations for the customer protocol for SEPA data formats are described in chapter 10.2.

10.1 Customer protocol - stipulations regarding contents and form
The customer protocol is to be created by the bank in accordance with the following
stipulations: The following fundamental provisions apply:

 A maximum of 72 characters may be displayed in a line.

 There will be no protocol entry for the post-processing. (Exceptions: ES verification,
decompression error, display of file contents)

 The file display (see chapter 10.1.3 and 10.2) will also be displayed in the case of files
without ES1.

1Does not apply to unstructured files

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 235
 Status: Final Version 2.4.2

10.1.1 Stipulations regarding contents

Order type of the customer protocol:
The order type of the customer protocol is PTK.
Storage and retrieval are not part of this specification. The transmission has already been
defined in other chapters. Therefore, only form and content are stipulated here.

List of the individual data fields for each action at the bank’s end:
The following data is to be documented in the customer protocol for each action at the bank’s
end:

Data to be documented Description
Date and time Date and time of the action on the bank system
Type of action See Chapter 10.6
Host name EBICS bank system ID (EBICS host ID)
Order type Clear text on the order type used by the customer to which the

respective bank action relates. Example: “Transmit free text file
in 7-bit code”; see Appendix (Chapter 13) and document “EBICS
Annex 2 Order Types”

If applicable, multiple instances of the following fields (i.e. per user) are present during the
ES verification:
 Subscriber ID (UserID, see Chapter 12.5 below)

 Subscriber name (only if available)

 Order number (OrderID, see Chapter 12.5 below)

 Result of the action (see Chapter 10.6)

The following entries (with the exception of the file display) are only available during the ES
verifications:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 236
 Status: Final Version 2.4.2

Entry Description
File name on the customer system “File name of the original file“ from ES file; see Appendix

(Chapter 14).
File display Order types (files in DTAUS, DTAZV and SEPA format):

Display of the substantive file data2 corresponding with
the contents of the data carrier’s accompanying note
see Chapter 10.1.3. For SEPA see chapter 10.2

Other order types3:
In the case of files with fixed record length, the first and
last record are displayed according to the record length
specified for each order type.

 In the case of files with variable record length, the first
and last logical record that is defined for the respective
operating system
is displayed (e.g. the record before the first CR/LF, e.g.
the record before the last CR/LF).

Explanatory text in the event of an
error

This field is only displayed when the result of the action “ES
verification” shows an error. It is to be understood as a sub-field
that explains the concrete error situation (if applicable, per user
and per logical file); example: “Agreed amount limit exceeded“,
see Chapter 10.6

10.1.2 Stipulations regarding form
The formal configuration of the customer protocol is in accordance with the following
stipulations:

10.1.2.1 Protocolling the actions at the bank’s end

Contents Format Lengt
h

Example Comments

1st line
Date dd.mm.yy 8 14.11.02
Spaces 1
Time hh:mm:ss 8 11:39:05
Spaces 5
Type of action <=50 Transmit file to bank See Chapter 10.6

3rd line
Spaces 9
Text: “Auftrag“ 7 order
Spaces 4
Colon 1 : This character is

2 In the case of “Collective ES’s” (several logical files with one ES) display takes place for
each logical file

3 In the case of 8-bit files, the first and last record are displayed as HEXDUMP.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 237
 Status: Final Version 2.4.2

always located at the
21st position.

Spaces 1
Text of the order
type

 41 Transmit domestic payment
transaction order

If necessary, fill with
blank spaces

Space 1
Order type
identification

 3 IZV See Chapter 13 and
document “EBICS
Annex 2 Order Types”

Spaces 1
Order number 4

Other lines
Spaces 9
Type of protocol
entry

 11 Result If necessary, fill with
blank spaces

Colon 1 : This character is
always located at the
21st position.

Spaces 1
Text of the
respective protocol
entry

 <=50 Transmission OK [01]

It is documented that the remote data transmission orders have been processed with
encryption and compression by appending two additional text lines to the result line.
The first additional line documents the encryption of the remote data transmission order, the
second line documents its compression.

1st additional line:
 22 spaces indentation

 Text: “Encrypted data transmission[04]”

2nd additional line:
 22 spaces indentation

 Text “Compressed data transmission[05]”

Examples of protocolling as a whole:

14.11.02 11:40:05 Datei zur Bank uebertragen
 Hostname : EBIXHOST
 Auftrag : Beliebige Datei senden FTB AAI0
 Teilnehmer : USER Teilnehmer User
 Ergebnis : Transmission successful [01]
 Data transfer encrypted [04]
 Data transfer compressed [05]

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 238
 Status: Final Version 2.4.2

10.1.2.2 Protocolling of errors during signature verification
Subscriber-related errors during signature verification:
As subscribers of different customers may sign within the VEU, details on subscriber, bank
code, and account number have to be provided in additional lines.

Contents Lengt
h

Example Comments

1st line
Spaces 9
Text “EU von“ 6 ES of
Spaces 1
User ID 8 USER0001
Colon 1 : This character is

located at the 25th
position.

Spaces 1
Error text and error
number

<=46 Agreed amount limit exceeded
[72]

See Chapters 10.6 and
10.1.2.5.

2 nd line
Spaces 9
Text „Teilnehmer :“ 12 Teilnehmer :
Space 1
Partner-ID 8 Partner-ID
Space 1
User-ID 8 User ID, assigned to

the prementioned
Partner ID

Leerzeichen 1
Name <=32 Optional: Name in plain

text (alphanumeric
characters)

3.Zeile
Spaces 9
Text „Bank-Code :“ 12 Bank-Code :
Space 1
Bank-Code <=50 Left-justified: If the error

relates to a specific
account, then the
declaration of the BIC
i.e. national bank-code
is mandatory

4.Zeile
Spaces 9
Text „Kontonummer
:“

12 Kontonummer:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 239
 Status: Final Version 2.4.2

Space 1
Account number <=50 Left-justified: If the error

relates to a specific
account, then the
declaration of the IBAN
i.e. national account
number ist mandatory

Example:

 EU von E7503480 : No account authorisation [71]

 Teilnehmer : E750348Z E7503480 Mustermann, Franz

 Bank-Code : DRESBE21XXX

 Kontonummer: DE89370400440532013001

General error texts during signature verification:

Contents Lenght Example Comments
General error messages for signature verification

Spaces 9
Error text and error
code

<=63 Die erforderliche Anzahl EUs
ist nicht vorhanden [33]

See chapter 10.6 und
10.1.2.5

Example of general error messages for signature verification:

 Waiting time expired due to incomplete order [55]

10.1.2.3 File display

Contents Length Comments
File display

Spaces 4
File display 68

See Chapter 10.1.3 for an example
File display at customer’s & bank’s end
(DTAUS and DTAZV format) and chapter 10.2 for SEPA
payments

10.1.2.4 Inserting individual texts
Bank-individual texts may be inserted in the customer log file. Such texts can e.g. include
processing information of the bank’s host or specific customer information. For the PTK log
files to be automatically evaluable the information is marked accordingly:
For marking purposes the first line of the individual text always contains the words
„ADDITIONAL INFORMATION“ and is inserted like the first line of a PTK log entry marked as
„kind of activity“ including time stamp (see chapter 10.1.2.1 Protocolling the actions at the

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 240
 Status: Final Version 2.4.2

bank’s end). The end is marked by the time stamp of the following PTK log entry analog to all
PTK log entries.

Example:

26.10.05 11:15:00 ADDITIONAL INFORMATION
===
THIS IS TO INFORM YOU THAT THE ELECTRONIC SIGNATURE CODE A003-

10.1.2.5 Support of foreign-language customer protocols
The customer protocol can optionally be generated in other languages as well as German. In
this connection, it should be noted that information contained in the protocol that is evaluated
by machine at the customer’s end after download (e.g. ES verification results) must be
marked separately. In this way, it can be ensured that machine evaluation of the protocols
generated in the various languages functions in the customer software. To this end, all
information that is of importance for machine evaluation is to be marked by the attachment of
an unambiguous 2-digit number. The actual text will be separated from the unambiguous
number by a space. The number will be contained within brackets “[]”. After carrying out a
protocol retrieval, the unambiguous numbers can then be correspondingly interpreted by the
customer system within the framework of machine evaluation, independent of the language.

Hence the following structure results for the texts in the customer protocol that may be
subject to machine evaluation:

TTTX’20’[NN]

 TTT actual text

 X’20 space as separator between text and number

 [NN] 2-digit, bracketed number that must be unambiguous

Machine evaluation is generally carried out on those texts that show the results of the remote
data transmission order, including the signature verification. The following table shows a list
of the text numbers and the associated texts that may be subject to machine evaluation. For
reasons of clarity, the individual texts are divided into the sections “Remote data
transmission”, “Electronic signature”, “File-based post-processing” and “Bank-technical
verifications”.

Text number Text
Remote data transmission (section 1-20)
01 Transmission OK
02 Transmission cancelled
04 Data transfer encrypted
05 Data transfer compressed

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 241
 Status: Final Version 2.4.2

Text number Text
07 No data available

Electronic signature (section 21-50)
21 Signature verification
22 Original file belonging to ES not yet transmitted
23 Signature(s) not yet transmitted
24 Signature(s) OK
25 Error with signature(s)
26 Subscriber has signed more than once
27 No signature authorisation
28 Signature is incorrect
29 Identical signature found
30 Incorrect public key version
31 No public key available
32 Public key not yet activated
33 The required number of ES’s is not present
34 Specifications of original file not identical for al ES’s
35 File cannot be verified. Completely repeat the order !
36 Incorrect structure or size of the ES file
37 Insufficient ES authorisation(s)

File-related post-processing (section 51-70)
51 Decompression error
52 Cannot read file
53 Decryption error
54 File structure error
55 Waiting time expired due to incomplete order
56 Order file deleted
57 Transfer to pass by accompanying note signed by hand
58 Transmission incorrect, Order file deleted

Bank-technical checks (section 71-90)
71 Not authorised for account
72 Agreed amount limit exceeded

Examples:
14.11.02 11:50:15 Datei zur Bank übertragen
 Hostname : EBIXHOST
 Auftrag : Send any file FTB AAI0
 Teilnehmer : USER subscriber User
 Ergebnis : Transmission successful [01]
 Data transfer unencrypted [03]
 Data transfer uncompressed [06]

14.11.02 11:50:15 Datei zur Bank übertragen
 Hostname : EBIXHOST
 Auftrag : Send any file FTB AAJ0

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 242
 Status: Final Version 2.4.2

 Teilnehmer : USER subscriber User
 Ergbenis : Transmission successful [01]
 Data transfer encrypted [04]
 Data transfer compressed [05]

14.11.02 11:51:55 Signature verification [21]
 Hostname : EBIXHOST
 Auftrag : Domestic payment transaction file IZV AAM0
 Teilnehmer : USER subscriber User
 Ergebnis : Signature(s) OK [24]
 Dateiname : C:\DAT\IZV1.DTA

Order display file

14.11.02 11:51:55 Signature verification [21]
 Hostname : EBIXHOST
 Auftrag : Domestic payment transaction file IZV AAN0
 Teilnehmer : USER subscriber User
 Ergebnis : Error with signature(s) [25]
 Dateiname : C:\DAT\IZV1.DTA

Order display file

 Insufficient numbers of signatures [33]

10.1.2.6 Protokollierung von nicht im EBICS-Verfahren autorisierten Aufträgen
Orders can be authorised outside the EBICS process (for example, by a accompanying note
signed by hand). In this case, the order attributes of the upload order are set to "DZHNN" for
the transmission of a payment order. Within the EBICS transaction an electronic signature of
signature class "T" is transmitted along with the payment order to the bank. The order is not
passed on to the VEU, but directly to the subsequent bank-specific processing. Orders
authorised by accompanying notes signed by hand are recorded in the customer protocol
after their submission as follows:

If the transport signature was correct:

14.10.07 11:51:55 Datei zur Bank übertragen
Hostname : EBIXHOST
Auftrag : (Auftrag mit Auftragsart und –nummer)
Teilnehmer : USER Teilnehmer User
Ergebnis : Transmission successful [01]
Data transfer encrypted [04]
Data transfer compressed [05]
Dateiname : C:\DAT\IZV1.DTA

Order display file

 transfer to pass by accompanying note signed by hand [57]

If the transport signature was not correct:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 243
 Status: Final Version 2.4.2

14.10.07 11:51:55 Datei zur Bank übertragen
 Hostname : EBIXHOST
 Auftrag : (Order with order type and order number)
 Teilnehmer : USER Teilnehmer User
 Ergebnis : Transmission successful [01]
 Data transfer encrypted [04]
 Data transfer compressed [05]
 Dateiname : C:\DAT\IZV1.DTA

Order display file
 Transmission incorrect, Order file deleted [58]

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 244
 Status: Final Version 2.4.2

10.1.3 File display at the customer’s and the bank’s end

Order types for files in DTAUS format:
 From field number of the DTAUS specification
Payment type A3
Bank sort code A4
Account number A9
Order party A6
Date created A7
Number of payments E4
Total of all amounts (EUR) E8
Total of account numbers E6
Total of bank sort codes E7
Implementation deadline A11b

Example

 ==
 G U T S C H R I F T E N
 Bank-Code : 30040000
 Kontonummer : 08225112600
 Auftraggeber : Bank-Verlag
 Erstellungsdatum : 10.05.00
 Anzahl der Zahlungssaetze : 1
 Summe der Betraege (EUR) : 68.672,00
 Summe der Kontonummern : 00000000001234567
 Summe der Bank-Codes : 00000000007654321
 Ausfuehrungstermin : 10.05.2000

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 245
 Status: Final Version 2.4.2

Order types for files in DTAZV format:
 From field number of the DTAUS specification

Q record information (1 Q record for each logical file)
Bank sort code Q3
Customer number Q4
Order party’s data Q5
Date created Q6

T record information (1 to n T records for each logical file)
Order currency T13
Bank sort code T3
Account currency T4a
Account number T4b
Implementation deadline T5
Amount

Total of fields T14a and T14b for all T records where the
preceding fields T13, T3, T4a, T4b and T5 are identically set. If
they are set differently in the same file, this T record
information is correspondingly specified more than once.

Z record information (1 Z record for each logical file)
Number of T data sets Control total from field Z4
Total of amounts Control total from field Z3

Example:

 ==
 G U T S C H R I F T E N
 Bank-Code : 30040000
 Kundennummer : 0000000001
 Auftraggeberdaten : KARL MUSTERMANN
 MUSTERSTR. 1
 50825 KOELN
 Erstellungsdatum : 10.05.00
 Auftragswaehrung : ILS
 Bank-Code : 30040000
 Kontowaehrung : EUR
 Kontonummer : 1234567890
 Ausfuehrungstermin : 10.05.00
 Betrag : 20.000,000
 Anzahl der Datensaetze T : 000000000000001
 Summe der Betraege : 000000000020000

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 246
 Status: Final Version 2.4.2

10.2 Stipulations for protocolling SEPA data formats
Customers may transfer SEPA payments to the bank by means of different variants. There
are separate corresponding order types. Depending on the variations, differences arise for
the protocolling in the customer protocol. The following variations are supported:

• Specifications for SEPA payment transactions (ZKA) with grouping option "Grouped":
Submission of only one pain message per file

• SEPA Container: Submission of several pain messages in one container

• Extended grouping options: Submission of bank transfers for several accounts and/or
execution dates in one message/file as described in chapter 2.3.2 of Annex 3 of the
“DFÜ Abkommen” (Remote Data Transmission Agreement).

10.2.1 Specification for SEPA payment transactions (ZKA)

The customer receives an edited version of the submitted file as a part of the customer
protocol. This file contains all relevant information for the identification of the original file.

28.02.05 16:29:48 Signature verification [21]
 Hostname : EBIXHOST
 Auftrag : SEPA Sammelueberweisung CCM WZXD
 Teilnehmer : KUNDE111 TLN11000 Name_TLN11000
 Ergebnis : Electronic signature(s) correct [24]
 Dateiname : TLN11000.CCM.WZXD

 ==
 G U T S C H R I F T E N
 Datei-ID : 4782647268346
 Datum/Zeit : 28.02.2008/09:30:47
 --
 Sammlerreferenz : 46573264781
 Bank-Code : WELADEDD
 Kontonummer : DE78300500000045403327
 Auftraggeberdaten : XXX
 Anzahl der Zahlungssaetze : 187
 Summe der Betraege (EUR) : 68.672,00
 Ausfuehrungstermin : 28.02.2008
 ==

Field “Auftrag” (= Order)
As usual, the field "order" contains the complete text and the order type code of the business
transaction. Furthermore, the order number is recorded as the last item. SEPA credit
transfers according to the ZKA variant are "SEPA bulk credit transfer" with order type code
CCM. SEPA direct debits have to be entered as "SEPA bulk direct debit " with order type
code CDM. There is no difference to the PTK structure of DTAUS/DTAZV.

Definition of other fields (if fields are not mentioned, then there is no difference to the existing
PTK structure; thus no further explanations are provided):

Field "Dateiname” (=File-ID):
Contains the ID of the submitted physical file (MessageIdentification).

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 247
 Status: Final Version 2.4.2

Field “Datum/Zeit” (=Creation date/time):
Contains the creation date and time of the submitted physical file (CreationDateTime). The
data are displayed as follows: DD.MM.YYYY/hh:mm:ss.

Field "Sammlerreferenz":
Display of the optional payment information identification adopted from the field
"PaymentInformationIdentification".

Fields "Bank code" and "Kontonummer” (=Account number):
Fields for the national and international bank or account identification (analogous to
DTAUS/DTAZV)

Field “Auftraggeberdaten” (=Name and address of principal):
If this (company) name should extend beyond the end of a line, it will not be wrapped, but
truncated as this field has no legal relevance for verification. Furthermore, this measure
improves machine readability. Otherwise, there is no difference compared to the previous
PTK structure.
Field "Anzahl der Zahlungssätze” (=Number of all transactions):
This value may be extracted from the field "Anzahl der Zahlungssätze”

Field “Summer aller Beträge (EUR)" (=Total of all amounts (EUR)): There is no
difference to the previous PTK structure. This value normally has to be computed as it is no
part of the pain message generally. If in the base variant the field ControlSum contains a
value, this value has to be adopted.

Field "Ausführungstermin” (=Execution date): There is no difference to the previous PTK
structure. In case of direct debits, the term "execution date" has to be substituted by the term
"due date".

10.2.2 SEPA-Container

28.02.05 16:29:48 Signature verification [21]
 Hostname : EBIXHOST
 Auftrag : SEPA Sammelueberweisung CCC WZXD
 Teilnehmer : KUNDE111 TLN11000 Name_TLN11000
 Ergebnis : Electronic signature(s) correct [24]
 Dateiname : TLN11000.CCC.WZXD

 ==
 G U T S C H R I F T E N
 Datei-ID : 4782647268346
 Datum/Zeit : 28.02.2008/09:30:47
 --
 Sammlerreferenz : 46573264782
 Bank-Code : WELADEDD
 Kontonummer : DE78300500000045403327
 Auftraggeberdaten : XXX
 Anzahl der Zahlungssaetze : 187
 Summe der Betraege (EUR) : 68.672,00
 Ausfuehrungstermin : 28.02.2008
 ==
 G U T S C H R I F T E N
 Datei-ID : 4782647268346
 Datum/Zeit : 28.02.2008/09:30:47
 --
 Sammlerreferenz : 46573264783
 Bank-Code : WELADEDD
 Kontonummer : DE78300500000045403327
 Auftraggeberdaten : XXX

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 248
 Status: Final Version 2.4.2

 Anzahl der Zahlungssaetze : 187
 Summe der Betraege (EUR) : 68.672,00
 Ausfuehrungstermin : 28.02.2008
 ==

If in this case the SEPA payment file has been submitted without a bank-technical electronic
signature, the Hash Value for each logical file that is contained in the container is returned
in the customer protocol:

...
 Ausfuehrungstermin : 28.02.2008
 Hash-Wert : 24 AE 87 34 FE BA 22 12
 34 E4 5A 34 54 33 43 23
 15 34 55 78 FA F1 33 11
 93 67 30 03 19 67 BE FA
 ==

Annotation to the field "Hash-Wert” (Hash value) (supplementing chapter 10.2.1), all other
fields are to be filled as explained in chapter 10.2.1: In case of SEPA orders the 32 byte hash
value serves as a backup procedure. It is required for the handling of accompanying notes
that are signed by hand in order to determine unambiguously if the accompanying note
(placing of orders) has been assigned to the ZV file. In case of files which are transferred
with an ES, the hash value is to be omitted because backup and placing of orders are
conducted during the ES. In the customer protocol the hash value is displayed in
hexadecimal representation. The single bytes are separated by blank characters in order to
improve readability. The hash value displayed will be wrapped after the eighth byte to avoid
an unspecific line break. The following bytes of the hash value are displayed in the next three
lines, each indented by 24 blank characters, thus placing each of them exactly underneath
the first eight bytes.

10.2.3 Extended grouping options

In matters of structure, the accompanying note signed by hand of the EPC compliant
extension differs only from the ZKA variant (see chapter 10.2.1) in that respect that the part
after the

is repeated as many times as there are PaymentInformation blocks contained in the pain
message.

28.02.05 16:29:48 Signature verification [21]
 Hostname : EBIXHOST
 Auftrag : SEPA Sammelueberweisung CCT WZXD
 Teilnehmer : KUNDE111 TLN11000 Name_TLN11000

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 249
 Status: Final Version 2.4.2

 Ergebnis : Electronic signature(s) correct [24]
 Dateiname : TLN11000.CCT.WZXD

 ==
 G U T S C H R I F T E N
 Datei-ID : 4782647268346
 Datum/Zeit : 28.02.2008/09:30:47
 --
 Sammlerreferenz : 46573264784
 Bank-Code : WELADEDD
 Kontonummer : DE78300500000045403327
 Auftraggeberdaten : XXX
 Anzahl der Zahlungssaetze : 187
 Summe der Betraege (EUR) : 68.672,00
 Ausfuehrungstermin : 28.02.2008
 --
 Sammlerreferenz : 46573264783
 Bank-Code : WELADEDD
 Kontonummer : DE78300500000045403327
 Auftraggeberdaten : XXX
 Anzahl der Zahlungssaetze : 187
 Summe der Betraege (EUR) : 68.672,00
 Ausfuehrungstermin : 28.02.2008
 --
 Sammlerreferenz : 46573264782
 Bank-Code : WELADEDD
 Kontonummer : DE78300500000045403327
 Auftraggeberdaten : XXX
 Anzahl der Zahlungssaetze : 187
 Summe der Betraege (EUR) : 68.672,00
 Ausfuehrungstermin : 28.02.2008
 ==

Annotations on the fields (only deviations from chapter 10.2.1):
Field "Anzahl der Zahlungssätze” (=Number of all transactions):
There is no difference in comparison to the previous PTK structure. This value indicates the
number of payments per PaymentInformation block and has to be determined as it is not
contained in the pain message.

Field “Summer aller Beträge (EUR)" (=Total of all amounts (EUR)): There is no
difference to the previous PTK structure. This value indicates the sum of all amounts per
PaymentInformation block and has to be determined as it is not contained in the pain
message.

10.3 Protocolling the VEU
Processing of orders of the following VEU order types is not protocolled:
 HVD (retrieve VEU state)

 HVU (download VEU overview)

 HVZ (retrieve VEU overview with additional information)

 HVT (retrieve VEU transaction details)

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 250
 Status: Final Version 2.4.2

Only orders of the following types are protocolled:
 HVE (add VEU signature)

 HVS (VEU cancellation)

Within the framework of VEU, EBICS provides signatures from more than one customer for
an order. In order that the order number is unambiguously assigned to a customer, a new
line “customer” is used in the protocol entries for VEU, containing the customer ID of the
initiating party in question. In this way, submission of a signature from more than one
customer or signature verification within the framework of the VEU from more than one
customer can be documented in the protocol files of all involved customers.

In EBICS, bank-technical upload orders are fundamentally submitted with at least one ES:
This can be a transport signature of one or more bank-technical ES’s. If the first ES
verification of an order is sufficient for its processing or rejection, the protocolling of this
signature verification takes place in accordance with Chapter 10.1: In this case, a protocol
entry is generated for the action “Signature verification” that also contains the file display of
the signed order data.

Example:

28.02.05 16:29:48 Signature verification [21]
 Hostname : EBIXHOST
 Auftrag : Inlandszahlungsverkehrsdatei IZV WZXD
 Teilnehmer : KUNDE111 TLN11000 Name_TLN11000
 Ergebnis : Electronic signature(s) correct [24]
 Dateiname : TLN11000.IZV.WZXD

 ==
 G U T S C H R I F T E N
 Bank-Code : 70050000
 Kontonummer : 0045403327
 Auftraggeberdaten : XXX
 Erstellungsdatum : 10.05.00
 Anzahl der Zahlungssaetze : 1
 Summe der Betraege (EUR) : 2,00
 Summe der Kontonummern : 222222222
 Summe der Bank-Codes : 222222222
 Ausfuehrungstermin : 28.02.2005
 ==

However, a protocol entry for the action “Forwarding to VEU” is firstly generated if the first
successfully-verified ES is not sufficient for processing of the order.

Example:

28.02.05 16:29:48 Forwarding to VEU [38]
 Hostname : EBIXHOST
 Auftrag : Inlandszahlungsverkehrsdatei IZV WZXD
 Ergebnis : Transfer order [46]

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 251
 Status: Final Version 2.4.2

 Processing OK [47]

In this case, the first and each subsequent signature verification will additionally be
protocolled as the action “Signature verification for VEU”. The structure of the protocol entry
“Signature verification for VEU” is comparable with that of the protocol entry for “Signature
verification” in Chapter 10.1. The difference lies in the missing file display and in the
additional customer’s specification of the initiating party.

Example of successful signature verification:

28.02.05 16:37:57 VEU signature verification [39]
 Hostname : EBIXHOST
 Auftrag : Inlandszahlungsverkehrsdatei IZV WZXD
 Kunde : Kunde111
 Teilnehmer : Kunde111 TLN11000 Name_TLN11000
 Ergebnis : Electronic signature(s) correct [24]
 Dateiname : KUNDE111.IZV.WZXD

Example of signature verification with errors:

28.02.05 16:37:57 VEU signature verification [39]
 Hostname : EBIXHOST
 Auftrag : Inlandszahlungsverkehrsdatei IZV WZXD
 Kunde : Kunde111
 Teilnehmer : Kunde111 TLN11000 Name_TLN11000
 Ergebnis : Electronic signature(s) incorrect [25]
 Dateiname : KUNDE111.IZV.WZXD
 EU von TLN11000: Unterschrift ist falsch

The protocol entry “Signature verification for VEU” is used irrespectively of whether the
order’s ES was transmitted via the new order type HVE or not. Transmission of an ES via
HVE is documented via a protocol entry for the action “Transmit file to bank”. Here, “Add
VEU signature” is used as an order text for order type HVE. For the order number, not only
the order number of the HVE order is protocolled but also the order number of the order that
is signed via HVE. This is included in the customer protocol under "reference".

Example:

28.02.05 16:29:48 Datei zur Bank uebertragen
 Hostname : EBIXHOST
 Auftrag : VEU-Unterschrift hinzufuegen HVE A233
 Referenz : Inlandszahlungsverkehrsdatei IZV WZXD
 Kunde : Kunde111
 Teilnehmer : Kunde222 TLN22000 Name_TLN22000
 Ergebnis : Transmission successful [01]
 Data transfer encrypted [04]
 Data transfer compressed [05]

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 252
 Status: Final Version 2.4.2

After sufficient bank-technical ES’s have been delivered and successfully verified for an
order, a further protocol entry is generated for the action “End of signature verification for
VEU”. This lists the subscribers that have signed the order via bank-technical ES, and
documents the result “Forward order for post-processing”. In addition, it contains the file
display of the signed order data in accordance with Chapter 10.1.3.

Example:

28.02.05 16:37:57 End of VEU signature verification [40]
 Hostname : EBIXHOST
 Auftrag : Inlandszahlungsverkehrsdatei IZV WZXD
 Kunde : KUNDE111
 Teilnehmer : KUNDE111 TLN11000 Name_TLN11000
 Teilnehmer : KUNDE222 TLN22000 Name_TLN22000
 Ergebnis : Order forwarded for post-processing [45]

 ==
 G U T S C H R I F T E N
 Bank-Code : 30040000
 Kontonummer : 0825112600
 Auftraggeberdaten : XXX
 Erstellungsdatum : 28.02.05
 Anzahl der Zahlungssaetze : 1
 Summe der Betraege (EUR) : 10.000,00
 Summe der Kontonummern : 222222222
 Summe der Bank-Codes : 222222222
 Ausfuehrungstermin : 28.02.2005
 ==

Transmission of the cancellation of an order via HVS is protocolled in an analogous manner
to transmission of a bank-technical ES via HVE. Here, “VEU cancellation” is used as an
order text for order type HVS. For the order number, not only the order number of the HVS
order is protocolled but also the order number of the order that is signed via HVS. This is
included in the customer protocol under "Referenz".

Example:

28.02.05 16:29:48 Datei zur Bank uebertragen
 Hostname : EBIXHOST
 Auftrag : VEU-Storno HVS A234
 Referenz : Inlandszahlungsverkehrsdatei IZV WZXD
 Kunde : KUNDE111
 Teilnehmer : KUNDE222 TLN22000 Name_TLN22000
 Ergebnis : Transmission successful [01]
 Data transfer encrypted [04]
 Data transfer compressed [05]

The cancellation process is documented with a new protocol entry for the action “Cancel
VEU order”. Again the order number of the order that is to be cancelled is used as the order
number and not the order number of the HVS order itself.

Example:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 253
 Status: Final Version 2.4.2

01.03.05 09:29:56 Cancellation of VEU order [41]
 Hostname : EBIXHOST
 Auftrag : Inlandszahlungsverkehrsdatei HVS A234
 Referenz : Inlandszahlungsverkehrsdatei IZV WZXD
 Kunde : KUNDE111
 Teilnehmer : KUNDE222 TLN22000 Name_TLN22000
 Ergebnis : Order cancelled [42]
 Dateiname : TLN11000.IZV.WZXD

In the event of successful cancellation of the order (result: “order cancelled”) a final protocol
entry is generated for this order. This lists both the subscribers that have approved the order
via bank-technical ES and also the subscriber that cancelled the order. At the same time, the
final protocol entry documents the result “Order cancelled” and contains the file display of the
cancelled order (see Chapter 10.1.2).

Example:

28.02.05 16:37:57 End of VEU signature verification [40]
 Hostname : EBIXHOST
 Auftrag : Inlandszahlungsverkehrsdatei IZV WZXD
 Kunde : KUNDE111
 Teilnehmer : KUNDE111 TLN11000 Name_TLN11000
 Teilnehmer : KUNDE222 TLN22000 Name_TLN22000
 Ergebnis : Order cancelled [42]

 ==
 G U T S C H R I F T E N
 Bank-Code : 30040000
 Kontonummer : 0825112600
 Auftraggeberdaten : BANK-Verlag
 Erstellungsdatum : 28.02.2005
 Anzahl der Zahlungssaetze : 1
 Summe der Betraege (EUR) : 10.000,00
 Summe der Kontonummern : 22222222
 Summe der Bank-Codes : 22222222
 Ausfuehrungstermin : 28.02.2005
 ==

Example for data cleansing (deletion of files that were neither cancelled nor released after a
period agreed upon by customer and bank). The specification of subscriber identifications is
dispensed with intentionally because several subscriber IDs may be considered:

28.02.05 16:29:48 Waiting time expired due to incomplete order [55]
 Hostname : EBIXHOST
 Auftrag : Inlandszahlungsverkehrsdatei IZV WZXD
 Kunde : KUNDE111
 Ergebnis : Order file deleted [56]

 ==
 G U T S C H R I F T E N
 Bank-Code : 11100000
 Kontonummer : 100111
 Auftraggeber : A1

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 254
 Status: Final Version 2.4.2

 Erstellungsdatum : 23.07.07
 Anzahl der Zahlungssaetze : 1
 Summe der Betraege (EUR) : 111,00
 Summe der Kontonummern : 100111
 Summe der Bank-Codes : 11100000
 Ausfuehrungstermin : 23.07.2007
 ==

10.4 Protocolling key management
For key management orders, protocol entries for the action “Transmit file to bank” or “File
downloaded from bank” are fundamentally generated to document the successful or
terminated transmission of order data. In the 3rd line as “Text of the order type”, the protocol
entries use the short descriptions in brackets from the following list of key management order
types:

 INI (Initial transmit public key)

 PUB (Transmit public key)

 HIA (Initial transmit public key)

 HSA (Initial transmit public key)

 HCA (Transmit public key)

 HCS (Transmit public key)

 HPB (Download bank’s public keys).

Examples:

19.05.05 10:07:07 Datei zur Bank uebertragen
 Hostname : EBIXHOST
 Auftrag : Initiales Senden Public-Key INI A0DH
 Teilnehmer : KUNDE111 TLN11000 Name_TLN11000
 Ergebnis : Transmission successful [01]
 Data transfer unencrypted [03]
 Data transfer uncompressed [05]

19.05.05 10:07:07 Datei von Bank abholen
 Hostname : EBIXHOST
 Auftrag : Abholen Public-Keys der Bank HPB
 Teilnehmer : KUNDE222 TLN22000 Name_TLN22000
 Ergebnis : Transmission successful [01]
 Data transfer encrypted [04]
 Data transfer compressed [05]

PUB, HCA, HCS, and HSA orders require precisely one ES (any signature class) from the
subscriber whose key is to be changed or transmitted. Protocolling of the signature
verification takes place in an analogous manner to the signature verification of bank-technical
upload orders but without the order data being displayed.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 255
 Status: Final Version 2.4.2

Examples:

28.02.05 16:29:48 Signature verification [21]
 Hostname : EBIXHOST
 Auftrag : Senden Public Key PUB A0DK
 Teilnehmer : KUNDE111 TLN11000 Name_TLN11000
 Ergebnis : Electronic signature(s) correct [24]

28.02.05 16:29:48 Signature verification [21]
 Hostname : EBIXHOST
 Auftrag : Senden Public Key HCA A0DL
 Teilnehmer : KUNDE111 TLN11000 Name_TLN11000
 Ergebnis : Electronic signature(s) incorrect [25]
 EU von TLN11000 : Unterschrift ist falsch

10.5 Protocolling other system-related orders
Orders of the following types are protocolled by means of simple download protocol entries,
in particular without protocolling the contents of the download data:

 HAA (download retrievable order types)

 HKD (download customer and subscriber data)

 HPD (download bank parameter)

 HTD (download customer and subscriber data).

Here, the text in brackets is used as “text of the order type” in the third line of the protocol
entries.

Example:

19.05.05 10:07:07 Datei von Bank abholen
 Hostname : EBIXHOST
 Auftrag : Kunden- und Teilnehmerdaten abholen HPD
 Teilnehmer : KUNDE222 TLN22000 Name_TLN22000
 Ergebnis : Transmission successful [01]
 Data transfer encrypted [04]
 Data transfer compressed [05]

Example for protocolling the suspension of a key (upload and subsequent ES verification):

19.12.07 11:46:59 Unterschrift zur Bank uebertragen
 Hostname : EBIXHOST
 Auftrag : Sperrung der Zugangsberechtigung SPR AF0Z
 Teilnehmer : T997100A Name_TLNT997100A
 Ergebnis : Transmission successful [01]

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 256
 Status: Final Version 2.4.2

 Data transfer encrypted [04]
 Data transfer compressed [05]

17.12.07 10:07:07 Signature verification [21]
 Hostname : EBIXHOST
 Auftrag : Sperrung der Zugangsberechtigung SPR AF0Z
 Teilnehmer : K9971000 T997100A Name_TLNT997100A
 Ergebnis : Electronic signature(s) correct [24]

10.6 Report texts
The following tables represent a complete overview of all report texts that are possible in
EBICS.

Type of
action

Report or error report texts
(German)

Report or error report texts
(English)

Transmission Datei zur Bank uebertragen
Datei von Bank abgeholt
Unterschrift zur Bank uebertragen

File submitted to the bank

File downloaded from the bank

Electronic signature submitted to the bank

Post-
processing

Unterschriftspruefung [21]
Weitergabe zur VEU [38]
Unterschriftsprüfung zur VEU [39]
Abschluss Unterschriftspruefung VEU [40]
Stornierung VEU Auftrag [41]
Fehler bei Dekomprimierung [51]
Fehler bei Entschluesselung [53]
Anzeige Dateiinhalt

Signature verification [21]
Forwarding to VEU [38]
VEU signature verification [39]
End of VEU signature verification [40]
Cancellation of VEU order [41]
Decompression error [51]
Decryption error [53]
Display of the file content

Result of
action

Report or error report texts
(German)

Report or error report texts
(English)

Transmission Uebertragung in Ordnung [01]
Abbruch der Uebertragung [02]
Datenuebertragung verschluesselt [04]
Datenuebertragung komprimiert [05]
Keine Daten vorhanden [07]

Transmission successful [01]
Transmisson aborted [02]
Data transfer encrypted [04]
Data transfer compressed [05]
No data available [07]

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 257
 Status: Final Version 2.4.2

Result of
action

Report or error report texts
(German)

Report or error report texts
(English)

Post-
processing

Originaldatei zur EU noch nicht
uebertragen [22
]Unterschrift(en) noch nicht uebertragen
[23]
Unterschrift(en) in Ordnung [24]
Unterschrift(en) fehlerhaft [25]
Auftrag storniert [42]
Auftrag nicht storniert [43]
Auftrag zurueckgewiesen [44]
Auftrag zur Verarbeitung weitergegeben
[45]
Auftrag uebergeben [46]
Bearbeitung in Ordnung [47]
Fehler bei Dekomprimierung [51]
Datei nicht lesbar [52] (nur bei Aktion
„Anzeige Dateiinhalt“)
Fehler bei Entschluesselung [53]
Datei ist in ihrem Aufbau fehlerhaft [54]
Wartezeit unvollstaendiger Auftrag
abgelaufen [55]
Auftrag geloescht [56]
OK (nur bei Aktion „Anzeige Dateiinhalt“)

Corresponding original file still not sent [22]

Electronic Signature(s) still not sent [23]

Electronic signature(s) correct [24]
Electronic signature(s) incorrect [25]
Order cancelled [42]
Order not cancelled [43]
Order rejected [44]
Order forwarded for post-processing [45]

Transfer order [46]
Processing OK [47]
Decompression error [51]
File cannot be read [52] (only in the case of
action “Display file content“)
Decryption error [53]
Incorrect file structure [54]
Waiting time expired due to incomplete
order [55]
Order file deleted [56]
OK (only in the case of action “Display file
content“)

Explanatory
text in the
event of ES
verification
errors

Report or error report texts
(German)

Report or error report texts
(English)

Texts relating to
subscriber

Teilnehmer hat mehrfach
unterschrieben [26]
Vereinbarter Hoechstbetrag
ueberschritten [72]
Keine Unterschriftsberechtigung [27]
Teilnehmer hat sich noch nicht
initialisiert
Teilnehmer noch nicht freigeschaltet
Teilnehmer gesperrt
Teilnehmereintrag nicht vorhanden
Unterschrift ist falsch [28]
Identische Unterschrift gefunden [29]
Falsche Public Key-Version [30]4
Kein Public Key vorhanden [31]
Public Key noch nicht freigegeben [32]
Keine Berechtigung fuer Konto [71]

User signed multiple times [26]

limit exceeded [72]

No authorisation rights [27]
User not yet initialised

User not yet activated
User is locked
User does not exist
Electronic signature incorrect [28]
Identical signature found [29]
Public key version incorrect [30]4
Public key does not exist [31]
Public key not yet activated [32]
No account authorisation [71]

4 This report is protocolled when a customer sends signature files to the financial institution

after conversion from an older program version (old ES format) to a new program version

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 258
 Status: Final Version 2.4.2

Explanatory
text in the
event of ES
verification
errors

Report or error report texts
(German)

Report or error report texts
(English)

General texts Erforderliche EU-Anzahl nicht
vorhanden [33]
Angaben zum Auftrag nicht je EU
identisch [34]
Datei nicht pruefbar. Auftrag
wiederholen [35]5
Aufbau bzw. Groesse der EU-Datei
falsch [36]
EU-Berechtigung(en) nicht ausreichend
[37]
Weitergereicht zur Freigabe mittels
Begleitzettel [57]
Auftragseinreichung fehlerhaft, Auftrag
geloescht [58]

Insufficient numbers of signatures [33]

Different order data in signatures [34]

File not testable. Repeat complete order
[35]5
Wrong structure or size of signatures
[36]
Electronic signature(s) rights insufficient
[37]
transfer to pass by accompanying note
signed by hand [57]
Transmission incorrect, Order file
deleted [58]

The cryptographic processes used in EBICS are described in this appendix.

(new ES format) without having carried out re-initialisation with regard to a public key
change.

5 This report is displayed in the event of a malfunction during the signature check, e.g. not
enough storage space

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 259
 Status: Final Version 2.4.2

11 Appendix: Cryptographic processes

11.1 Identification and authentication signature

11.1.1 Process
Identification and authentication signatures are based on the RSA signature process. The
following parameters determine the identification and authentication signature process:
Length of the (secret) RSA key, hash algorithm, padding process, canonisation process.

For the identification and authentication process, EBICS defines the process “X002” with
the following parameters:

Parameter Value
Key length in Kbit >=1Kbit (1024 bit) and <=16Kbit
Hash algorithm SHA-256
Padding process PKCS#1
Canonisation process http://www.w3.org/TR/2001/REC-xml-c14n-

20010315

As with X002 the minimum key length has not been changed in comparison to X001, the
identification and authentication keys need not to be changed when upgrading from X001 to
X002.
The optional XML signature fields “KeyInfo” and “Object” remain unfilled.
From EBICS 2.4 on, the customer system must use the hash value of the public bank key
X002 in a request. The transaction is cancelled with return code
EBICS_INVALID_REQUEST_CONTENT if X001 is still used in a request.

11.1.2 Format
Identification and authentication signatures are represented in EBICS messages in
accordance with the W3C recommendation “Signature Syntax and Processing”
((http://www.w3.org/TR/xmldsig-core/). Hence identifiers of the algorithms for forming the
hash value, the signature and the indicator of the canonisation process are components of
the identification and authentication signature. Therefore it is not necessary to change the
XML interface when a new version of “X00n” is defined with altered parameters. This
especially applies for versions that utilise SHA-224, SHA-256, SHA-384 or SHA-512 as a
hash function.
When placing the identification and authentication signature in the element
SignatureValue, it is principally not filled up to the full length of the modulo of the RSA key
for generating this signature. .

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 260
 Status: Final Version 2.4.2

11.2 Electronic signatures

11.2.1 Process
Electronic signatures are based on the RSA signature process. The processes for
generating/verifying electronic signatures are defined in the Appendix (Chapter 14).
As a minimum requirement, EBICS must support Version “A004” of the bank-technical
electronic signature.

11.2.2 Format
The XML schema definition file “ebics_orders.xsd” contains the definition of the global
elements BankSignatureData for embedding the financial institution's electronic signature
(As this is an intended feature, the structure has not been updated for signatures in
structured form, i.e. BankSignatureData still contains an element OrderSignature to
receive a bank ES in base64 coding (see Diagram 4).
The schema file „ebics_signature.xsd“ contains the element UserSignatureData for the
signature of the subscriber in EBICS messages. To this end, an instance document is
created for “ebics_signature.xsd” that contains UserSignatureData for subscriber ES’s as
top-level elements. UserSignatureData contains a list of elements OrderSignature
and OrderSignatureData respectively for one or more subscriber ES’s (see also
Diagram 4).

Signature process A004:
The binary format of the subscriber’s ES corresponds to the format of the signature file in
accordance with the Appendix (Chapter 14.2.5.3). The attribute PartnerID of
OrderSignature MUST be filled out with the customer ID of the respective signatory.

The binary format of the ES of a financial institution is specified as follows, based on the
format of the signature file from Chapter 14.2.5.3.

In comparison with the customer’s ES file, only the field “User ID” is replaced with the
semantically-corresponding field “Host ID”.

The instance document is embedded into the EBICS XML structure
ebicsRequest/body/DataTransfer/Signature in ZIP-compressed, hybrid-encrypted
and base64-coded form.

11.2.3 EBICS authorisation schemata for signature classes
EBICS specifies the authorisation schemata for orders that require one or two bank-technical
ES’s. Authorisation schemata for orders that require more than two bank-technical ES’s are
not described in this standard, although it is not forbidden to transmit more than two ES’s.

E = single signature, A = first signature, B = second signature, T = transport signature (not
bank-technical).

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 261
 Status: Final Version 2.4.2

Authorisation schema for orders with a minimum ES quantity = 0:

The minimum quantity ES = 0 applies to orders that are authorised via
accompanying notes ("DZHNN") or for key management orders which
require only a transport signature for authorisation (ES of class E, A, and B
are also possible). Orders authorised by ES ("OZHNN") have to be signed sufficiently. As a
bank-technical ES is the minimum requirement, the minimum number of ES = 1 is the rule.

Authorisation schema for orders with a minimum ES quantity = 1:

 Authorisation via a single bank-technical ES:

Authorisation of the order with a single ES can be effected with a single
signature.

 Authorisation with two bank-technical ES’s:
Authorisation of the order can also take place with 2 ES’s
of class E, A or B if at least one of these two is a first or a
single signature.

Authorisation schema for orders with a minimum ES quantity = 2:
 With the exception of the combination of two second

signatures, authorisation of the order is possible with any
combination of two bank-technical ES’s.

In general, the following applies:

 There is no maximum ES quantity defined, but in the case of more than two ES the
transmitted signatures have to comply with the rules the authorisation schemas above.

 Individual signatures are fundamentally admissible for authorisation, but are only
sufficient in the case of orders where the minimum ES requirement = 0 or ES
requirement = 1

 A transport signature never authorises the implementation of an order, it only allows the
order to be submitted

 The order in which signatures are submitted is irrelevant

 The bank-technical ES’s of an order MUST be supplied by different subscribers (if
necessary, also different customers).

E A B T

E A B T

first ES
second ES E A B T

E
A
B
T

first ES
second ES E A B T

E
A
B
T

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 262
 Status: Final Version 2.4.2

11.3 Encryption

11.3.1 Encryption at TLS level

11.3.1.1 Process
The customer system and the bank system MUST agree on the use of one of the following
procedures (so-called “cyphersuites”, see RfCs 2246 and 3268) within the framework of the
TLS handshake (prioritised in accordance with this order):

 TLS_RSA_WITH_AES_256_CBC_SHA: TLS with certificate type/key exchange process
RSA, encryption process AES (key length 256bits, CBC mode) and hash process SHA-1

 TLS_RSA_WITH_AES_128_CBC_SHA: TLS with certificate type/key exchange process
RSA, encryption process AES (key length 128bits, CBC mode) and hash process SHA-1

 TLS_RSA_WITH_3DES_EDE_CBC_SHA: TLS with certificate type/key exchange
process RSA, encryption process 3-key triple VEU (168bit effective key length, divided in
each case into 56bit encryption-decryption-encryption, CBC mode) and hash process
SHA-1.

For transmission of the transaction key to the communication partners, the “Specification for
the FTAM connection” (Appendix 2 of the DFÜ-Abkommen) defines a particular data
structure, the so-called file-header. For compatibility reasons, the information from the file-
header is incooperated in EBICS. In addition to the asymmetrically-encrypted symmetrical
key, the file-header also contains the hash value of the public RSA key that was used for
encryption of the symmetrical key.

The process TLS_RSA_WITH_3DES_EDE_CBC_SHA MUST at least be supported by all
financial institution systems and all customer systems.

11.3.2 Encryption at application level

11.3.2.1 Process
The process for encrypting the order data and ES’s of an order is a hybrid process based on
the symmetrical encryption process 2-key triple DES and the asymmetrical encryption
process RSA.

The order data and ES’s of an EBICS transaction are symmetrically encrypted. For each
EBICS transaction, a random symmetrical key (transaction key) is generated by the sender
of order data and/or ES’s that is used for encryption of both the order data and the ES’s. The
symmetrical key is transmitted to the recipient asymmetrically-encoded.

Based on the encryption process “V001” (see Appendix, Chapter 15) which was specified for
the FTAM process, EBICS defines the encryption process “E002” as having the following
features:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 263
 Status: Final Version 2.4.2

 Symmetrical encryption algorithm (see Appendix, Chapter 15)

- Generation of the transaction key (see Appendix, Chapter 15)
- AES-128 (key length 128 bit) in CBC mode
- ICV (Initial Chaining Value) = 0
- Padding process in accordance with ANSI X9.23 / ISO 10126-2.

 RSA encryption of the transaction key, key length >= 1Kbit (1024 bits) and <=16Kbit

- Difference with regard to V001: 768
 Padding process for the RSA encryption: PKCS#1

- Difference with regard to V001: 0-padding.

As with E002 the minimum key length has not been changed in comparison to E001, the
identification and authentication keys need not to be changed when upgrading from E001 to
E002.

The process for asymmetrical encryption of the transaction key must be adapted for
EBICS as follows:

 Minimum length of the (secret) RSA key is 1024

 The padding process conforms with PKCS#1.

Concretely, these adaptations mean:

 The length of PDEK is equal to the length of the RSA key that is used (>= 1024)

 PDEK is generated from DEK via PKCS#1 padding

 EDEK is the result of the RSA encryption of PDEK.

Analogously, the process for decryption of the transaction key must also be adapted for
EBICS:

 PDEK is the result of the RSA decryption of EDEK

 The 128 lowest-value bits of PDEK form the secret key DEK.

In the context of “E002”, the process SHA-256 is used to form this hash value of the
public RSA key.

11.3.2.2 Formats
The compressed and encrypted ES’s and order data segments are embedded in the EBICS
messages as base64-coded binary data.

Within the EBICS messages, transmission of the asymmetrically-encrypted transaction key
takes place within an XML element of type DataEncryptionInfoType. This type is

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 264
 Status: Final Version 2.4.2

defined in the XML schema definition file ebics_types.xsd and its graphical representation is
contained in Diagram 103.

Diagram 103: Definition of the XML schema type DataEncryptionInfoType

The element ebicsRequest/body/DataTransfer/DataEncryptionInfo or
ebicsReponse/body/DataTransfer/DataEncryptionInfo, respectively, of type
DataEncryptionInfoType is a part of the first EBICS request of an upload transaction (cf.
ebics_request.xsd) or the first EBICS response of a download transaction (cf.
ebics_response.xsd).

In contrast to the resolution, DataEncryptionInfoType does not contain any subscriber
details. This is not necessary, since the sender/recipient of the order data is always the
initiating party. The subscriber / customer ID of the initiating party is already a component of
the control data of the first EBICS request of every EBICS transaction and is firmly assigned
to the EBICS transaction.

In addition to the hash value of the public RSA key, the element
EncryptionPubKeyDigest also contains the version of the encryption process that is
used and the identifier of the hash algorithm used.

Therefore it is not necessary to change DataEncryptionInfoType when a new version
“E00n” is defined with altered parameters. This especially applies for versions that allow
SHA-224, SHA-256, SHA-384 or SHA-512 as one or more of the hash functions.

When placing the encrypted transaction key in the element TransactionKey it is principally
not filled up to the full length of the modulo of the RSA key for the encryption.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 265
 Status: Final Version 2.4.2

11.4 Replay avoidance via Nonce and Timestamp

11.4.1 Process description
The first EBICS request that serves for initialisation of an EBICS transaction contains the
elements “Nonce” and “Timestamp” that are together intended to prevent replaying of this
request.

“Nonce“ and “Timestamp“ form a functional unit for the avoidance of replay:

1. The customer system generates a random “Nonce” and sets a “Timestamp” at
the current point in time that the message is sent.

2. The bank system compares the received “Nonce” with a locally-stored list of
previously-received “Nonce” values. In addition, it verifies the deviation
between the “Timestamp” and the current time. If the “Nonce“ that has just
been received is present in the stored list or if the deviation of the “Timestamp”
is greater than a tolerance period specified by the financial institution, the
request is answered with the technical error code
EBICS_TX_MESSAGE_REPLAY.

3. If the “Nonce“ and “Timestamp” verification was carried out without errors, the
bank system stores the “Nonce” and “Timestamp” pair in the local list and
continues with the further processing of the message.

The bank system can delete “Nonce”/”Timestamp” pairs whose time stamps lie outside the
tolerance period from its list: Messages that contained such a pair would have already been
rejected due to the excessive deviation of the “Timestamp”. Therefore the fixed tolerance
period applies equally to the verification of new pairs as well as the deletion process of
stored pairs.

With the elements “Nonce” and “Timestamp”, this process guarantees that the first EBICS
request of a transaction is unambiguous. This prevents the bank from initialising new EBICS
transactions on the basis of old, replayed messages. At the same time, “Timestamp” restricts
the chronological necessity of the storage of “Nonce” values by the bank.

11.4.2 Actions of the customer system

11.4.2.1 Generation of “Nonce” and “Timestamp”
The customer system MUST fill out the following fields in the transaction phase “Initialisation”:

 ebicsRequest/header/static/Nonce with a cryptographically-strong random
number of length 128 bits

 ebicsRequest/header/static/Timestamp with the current time stamp for
transmission of the EBICS request (date and time in accordance with ISO 8601).

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 266
 Status: Final Version 2.4.2

An example of syntactically-correct setting of the values “Nonce” and “Timestamp” is shown
in the following XML excerpt:

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest
 xmlns="http://www.ebics.org/H003"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ebics.org/H003 http://www.ebics.org/H003/ebics_request.xsd"
 Version="H003" Revision="1">

 <header authenticate="true">

 <HostID>EBIXHOST<HostID>

 <Nonce>01A56FF768B3B36C5120E9904A7FB035</Nonce>

 <Timestamp>2005-06-22T17:07:34.123+02:00</Timestamp>

 […]

 </header>

 […]

</ebicsRequest>

Further information on correct setting of the two XML schema elements can be found under
http://www.w3.org/TR/xmlschema-2/#hexBinary (hexBinary) and
http://www.w3.org/TR/xmlschema-2/#dateTime (dateTime).

11.4.2.2 Behaviour in the event of error response
EBICS_TX_MESSAGE_REPLAY

The bank system uses the technical error code EBICS_TX_MESSAGE_REPLAY to signal
that the EBICS message that has just been sent by the client contains a “Nonce” value that
corresponds with that stored in the bank system, or that the “Timestamp” lies outside the
tolerance period.

When using cryptographically-strong random numbers as “Nonce” and when the financial
institution has selected sensible tolerance periods (guideline: a few hours), the likelihood of
an accidental collision can be disregarded due to the miniscule possibility of its occurrence.

Therefore after receipt of the report EBICS_TX_MESSAGE_REPLAY, the customer system
must take into account the possibility of a replay attack, an intolerably-imprecise clock setting
at the customer’s or the bank’s end, or an error in its own transaction management in the
assignment of “Nonce” values.

If the subscriber would nevertheless like to successfully transmit the EBICS message in
question, they must first regenerate the fields ebicsRequest/header/static/Nonce
and ebicsRequest/header/static/Timestamp in accordance with Chapter 11.4.2.1.
The remaining contents can be left unchanged.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 267
 Status: Final Version 2.4.2

11.4.3 Actions of the bank system

11.4.3.1 Verification of “Nonce” and “Timestamp”
When the bank system receives an initial EBICS message from a subscriber, it MUST carry
out the following actions to verify for message replay. If these verifications are all passed,
there is no message replay.

1. Matching of received “Timestamp” and local time stamp: Normalised to
UTC, the received “Timestamp” must be within the tolerance period that is
stretched around the current time stamp of the bank system. This tolerance
period will compensate for differences in precision between the clocks
involved in the systems and possibly also early/late changeover to
summer/wintertime. At the same time, the tolerance period determines when
the bank system can delete stored “Nonce”/”Timestamp” pairs. Messages
arriving with a “Timestamp” outside of the tolerance period will not be
accepted. “Nonce”/“Timestamp” pairs that have been stored in the past and
are now outside of the tolerance period can therefore be deleted.
The tolerance period must be set as a one-off occurrence by the bank system.
Here, large values (= large tolerance periods) increase the storage
requirements for valid “Nonce”/“Timestamp” pairs whilst low values (= smaller
tolerance periods) increase the risk of rejected EBICS messages as a result of
excessive clock differences between customer & bank systems.
If the received “Timestamp” is not within the tolerance period there is a risk of
message replay. Therefore the bank system MUST reply with the technical
error code EBICS_TX_MESSAGE_REPLAY.

2. Comparison of the received “Nonce” with the locally-stored “Nonce”
values: All “Nonce”/“Timestamp” pairs that originate from valid EBICS
requests within the tolerance period are stored at the bank’s end. If the
received “Nonce” corresponds with a stored “Nonce” the bank system MUST
reply with the technical error code EBICS_TX_MESSAGE_REPLAY.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 268
 Status: Final Version 2.4.2

11.5 Initialisation letters
Initialisation letters for INI contain the public bank-technical subscriber key, initialisation
letters for HIA contain the subscriber’s public identification and authentication key and the
subscriber’s public encryption key.

11.5.1 Initialisation letter for INI (example)

11.5.1.1 With version A004 of the electronic signature

User name Hans Mustermann

Date DD.MM.YYYY

Time HH:MM:SS

Recipient Remote data transmission bank

User ID Xxxxxxxx

Customer ID Yyyyyyyy

ES version A004

Public key for the electronic signature

Exponent 1024
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 01

Modulus 1024

FF 12 03 26 E6 30 90 A5 06 01 EF 16 10 21 EE D4
77 23 27 A9 14 17 07 F1 71 25 22 D5 91 00 41 0A
D7 4A 2F D5 6C 16 4E C3 2D 82 F3 02 31 CD FF FB
45 77 E4 7E E5 B2 CB 7B 9A 5F 75 7B 32 7C 16 E5
FB 16 41 0B 4A 39 0F 50 47 68 9C 9B 27 D2 A0 9C
CA 23 A8 C3 1C AB A5 ED 72 75 9D 0A B8 9B 37 BA
00 CB 68 BB AC C8 D1 C8 D3 35 C8 BF 1F A3 06 CF
24 5A DC EB 84 64 86 D0 97 8F E4 67 08 78 81 07

Hash D2 FD 56 F3 1E 5C 76 D2 B8 2C
 0B 1E 4C 6A 13 9E 85 87 E8 D3

I hereby confirm the above public keys for my electronic signature.

_____________________ _______________________________

Place/date Signature

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 269
 Status: Final Version 2.4.2

11.5.1.2 With version A005 of the electronic signature

User name Hans Mustermann

Date DD.MM.YYYY

Time HH:MM:SS

Recipient Remote data transmission bank

User ID Xxxxxxxx

Customer ID Yyyyyyyy

ES version A005

Public key for the electronic signature:

Exponent 1024
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 01

Modulus 1536

9B 86 4D 2E 72 9E 9E 03 94 78 EB 96 41 E6 27 C6
F2 98 B9 B5 4D AC B2 B8 99 C6 13 7C 6A 67 A3 93
56 B0 C0 E2 BB 22 D5 F1 4A 4E 3E B5 E0 50 9A 41
6E A5 95 8F 75 CF A3 04 F9 BA 32 18 BF ED 24 EC
B6 06 5E 62 80 42 F9 7A C1 32 2C F3 75 3F D5 92
72 2C A2 83 E8 B5 47 12 59 F6 4B CD A6 4E D8 7F
7B 56 DA D9 57 32 79 B4 7B 66 79 C9 F7 18 40 7E
CF AC 5C 46 14 6A B7 70 1D 47 D0 51 E7 81 62 2B
49 D7 09 5F 47 A4 4C A3 3F 67 04 02 4B 40 3D 71
AA 5F 3E A2 30 53 77 30 71 0A 96 DD 62 BE 6C BF
40 27 28 0C 9F FF E0 6D 0A 8C 5E E0 75 E2 30 A4
49 13 65 08 E5 A9 11 E3 7D 1C FF 7F B9 31 18 1F

SHA-256 hash :
 D4 7A 24 27 5C 5F D8 0D
 50 1B CF 28 C5 38 FE 1F
 51 DD 24 8B 3E 5C 72 D5
 CD 47 9D 82 79 0C EF 52

I hereby confirm the above public keys for my electronic signature.

_____________________ _______________________________

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 270
 Status: Final Version 2.4.2

11.5.2 Initialisation letter for HIA (example)

User name Hans Mustermann

Date TT.MM.JJJJ

Time HH:MM:SS

Recipient DFÜ-Bank

User ID Xxxxxxxx

Customer ID Yyyyyyyy

Identification and authentication
signature version

X002

Encryption version E002

Public identification and authentication key:

Exponent : 1024 Bit length
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 01

Modulus: 1024 Bit length
B7 9D 3A F0 68 15 AC 6E AB BF F3 A1 D4 38 A3 D1
4D D6 74 2C CB 6D 00 52 D5 0C A2 B0 BF 22 BD 08
8F F4 5B 3E B5 67 B5 F5 AE D6 39 69 01 41 D0 69
8B D5 F6 EA 03 F1 4B 59 56 84 DE 93 13 D8 07 FB
26 13 05 4B 04 F2 27 65 DA 26 51 35 48 50 64 B3
68 CA 7C E7 FD B0 12 34 CF 37 94 EE CE 7B B6 2D
79
6C
79

73
FD
9A

09
A0
67

82
31
25

0A
42
DC

96
2C
44

D9
F0
CB

13
A4
66

75
EB
39

26
30
30

D6
A0
11

AC
69
9A

19
08
A5

40
A7
13

F8
61
CA

3E
78
E7

84 53 1A 4C 27 AB 66 62 83 43 E1 B2 81 D6 70 83

SHA-256 hash:

 B8 3C B0 19 66 C9 9C 6E
 2C A5 BA 6A 2B 56 01 92
 35 2A B4 91 53 E9 0B BA
 34 C1 5E B5 9F 4A 64 F7

Public encryption key:

Exponent : 1024 Bit length

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 271
 Status: Final Version 2.4.2

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 01

Modulus: 2048 Bit length

C1 C6 41 30 AF 7A 7C 4C 37 07 48 B0 BD C1 FD 06
8B 56 06 52 CF 2C 88 9A FB 24 03 99 A4 22 17 63
56 8D EA 84 FE 53 40 2E B1 D9 FF 3A 8E DD 7A F4
94 95 53 44 A3 D9 B5 26 60 EC B1 09 FE D9 70 F3
D9 6E 40 74 77 16 9B 85 1F 53 65 A3 45 2D C6 97
5D 7F 9D 0B 22 D9 1B 3C 6F C9 1B 7B 44 11 C2 69
F0
1B

B8
25

2C
CA

B6
13

53
0D

BD
46

02
A2

11
E7

DB
31

FF
E0

5D
78

B1
11

C4
4A

A7
07

A7
DA

6C
05

C7
A3
42
59
3F
13
40
EC

CE
48
74
B6
D5
93
4D
C7

A2
8A
A1
2C
B8
62
BF
2A

C9
62
F9
95
2B
64
6B
D7

39
A3
5A
99
F8
4B
1B
89

8C
81
74
2A
5A
C4
A5
A3

AB
0B
03
B7
A2
82
FB
3B

A7
FD
63
44
2A
E8
E1
62

0D
1A
EA
32
A1
41
E6
9D

3B
8C
CB
9D
DE
E7
F9
2F

42
05
BF
72
1F
9C
A3
B0

8B
F7
E9
48
C5
39
5F
03

D7
6A
35
32
28
01
73
D7

30
8D
83
B6
21
11
C8
6B

9F
43
60
01
09
AB
29
96

B2
6C
93
5E
A0
36
37
9D

SHA-256 hash:

 9D 2D C0 AF 55 6E D4 D9
 04 00 BB 23 AF C8 1B AB
 91 A3 7A 2E 97 A9 31 6D
 D0 01 79 5F C6 D0 CD 54

I hereby confirm the above public keys for my electronic signature.

_____________________ _______________________________

Place/date Signature

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 272
 Status: Final Version 2.4.2

11.6 Generation of the transaction IDs
Transaction IDs are cryptographically-strong random numbers with a length of 128 bits. This
means that the likelihood of any two bank systems using the same transaction ID at the
same time is sufficiently small.

Transaction IDs are generated by cryptographic pseudo-random number generators (PRNG)
that have been initialised with a real random number (seed). The entropy of the seed should
be at least 100 bits.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 273
 Status: Final Version 2.4.2

12 Overview of selected EBICS details

12.1 Optional EBICS features
With EBICS, not all functions are defined as mandatory. Financial institutions that implement
the EBICS standard are free to support some order types or functions within a transaction
sequence.

12.1.1 Optional order types
The following EBICS order types CAN be supported by a financial institution (i.e. they are
optional):

 HAA (download retrievable order types)

 HKD (download customer’s customer and subscriber data)

 HTD (download subscriber’s customer and subscriber data)

 HSA (subscriber initialisation for subscribers with access to remote data transmission via
FTAM).

12.1.2 Optional functionalities in the course of the transaction
A financial institution or a customer product CAN support the following EBICS functionalities
(i.e. they are optional for both sides):

 Preliminary verification (see Chapters 3.6 and 5.3)

 Recovery (see Chapters 3.4 and 5.4).

12.2 EBICS bank parameters
With EBICS order type HPD (see also Chapter 9.2), the subscriber can receive information
relating to the financial institution’s specific access (AccessParams) and protocol
parameters (ProtocolParams).

Access parameters (AccessParams):

Parameter name # Meaning Example

URL 1..∞

URL or IP address for electronic
access to the financial institution
It is possible to specify several URLs.
Every URL with a valid_from-date
that has been reached (or if the
corresponding field is empty) is valid.
If a URL cannot be reached the
customer may use another valid
address. “www.die-bank.de”

URL@valid_from 0..1

Commencement of validity of URL/IP.
If not specified, the entry is valid with
immediate effect “2005-01-30T15:30:45.123Z“

Institute 1 Designation of the financial institution “Die Bank“

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 274
 Status: Final Version 2.4.2

HostID 0..1 ID of the EBICS bank system “bank01“

Protocol parameters (ProtocolParams):

Parameter name # Meaning
coll. order

types

Version 1

 Permitted versions (listed in each case) for EBICS
protocol (Protocol), encryption (Encryption)
signature (Signature) and identification and
authentication (Authentication) all

Recovery 0..1 Support for the recovery of transactions all

PreValidation 0..1

Support for preliminary verification. If this parameter is
set, the financial institution thereby ensures that it
checks at least a part of the data that is transmitted by
the subscriber within the framework of preliminary
verification. However, the financial institution is not
obliged to comprehensively verify the data uploads

X509Data 0..1

Support for X.509 data such as e.g. certificates from the
XML field ebicsRequest/body/X509Data. The
financial institution can specify via the attribute flag
@persistent whether it persistently archives the
subscriber’s X.509 data in the state “Ready”. In this
event, the subscriber does not have to transmit them
anew with each transaction initialisation. If not specified,
the financial institution does not support persistent
X.509 data maintenance all

ClientDataDownload 0..1

Support of order types HKD (download customer data,
Chapter 9.3) and HTD (download subscriber data,
Chapter 9.4). HKD, HTD

DownloadableOrder»
Data 0..1

Support of order type HAA (download retrievable order
types, Chapter 9.1). HAA

12.3 Order attributes
The following settings are permissible for the order attribute (5 bytes alphanumeric) in
EBICS:

Position Meaning Permitted values
1 Type of transmitted data O = order data and ES’s

U = bank-technical ES’s
D = order data and transport ES
(D is also used for HIA, INI, HPB)

2 Compression type for order data and/or
ES’s

Z = ZIP compression

3 Encryption type for order data and/or ES’s N = no encryption
H = hybrid process AES/RSA

4 Reserve
5 Reserve

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 275
 Status: Final Version 2.4.2

Depending on order type and possible further marginal conditions, an EBICS client MUST
enter the following order attributes in the control data of the first EBICS request of an EBICS
transaction (ebicsRequest/header/static/OrderDetails/OrderAttribute):

Order type Marginal conditions Order attributes
INI - DZNNN
HIA - DZNNN
HSA - OZNNN
HPB - DZHNN
PUB - OZHNN
HCA - OZHNN
HCS - OZHNN
SPR - UZHNN
HVE - UZHNN
HVS - UZHNN

other upload order types order data and ES(s) OZHNN

other upload order types only bank-technical ES(s), no
order data UZHNN

other upload order types

order data with transport
signature (release of the order
via accompanying note instead

of bank-technical ES)

DZHNN

other download order types
download data request with
financial institution’s bank-

technical ES
OZHNN

other download order types
download data request without

financial institution’s bank-
technical ES

DZHNN

12.4 Security media of bank-technical keys
EBICS defines the following value categories for specification of the security medium of
(secret) bank-technical keys:

Security medium Setting
No specification 0000
Diskette 01dd
Chipcard 02dd
Other removable storage medium 03dd
Non-removable storage medium 04dd

In the above table, “dd” represents any number combination that is specified individually by
each institution.

12.5 Patterns for subscriber IDs, customer IDs, order IDs
The following table specifies the patterns of different IDs that are permitted in EBICS. In
addition, for each ID all of the XML types that are used in EBICS are listed to record
corresponding IDs.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 276
 Status: Final Version 2.4.2

ID Subscriber ID / ID of the

technical subscriber
Customer ID Order ID

Pattern [a-zA-Z0-9,=]{1,35} [a-zA-Z0-
9,=]{1,35}

[A-Z]{1}[A-Z0-
9]{3}

XML type
(XML schema
file)

Both of the type UserIDType
(ebics_types.xsd)

PartnerIDType
(ebics_types.xsd)

OrderIDType
ebics_types.xsd

For the bank computer number HostID (XML type HostIDType in schema file
ebics_types.xsd) no pattern [a-zA-Z0-9,=]{1,35} is defined.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 277
 Status: Final Version 2.4.2

13 Appendix: Order type identifiers

The order types in the following table are explained in detail in Chapters 8.3 and 9.

Identifica
tion

Direction
of trans-
mission

Text Optional/mandatory support

FDL D Download file with any format Optional
FUL U Upload file with any format Optional
HAA D Download retrievable order types Optional

HCA U Send amendment of the subscriber key for
identification and authentication and encryption Mandatory

HCS U Transmission of the subscriber key for ES,
identification and authentication and encryption Mandatory

HEV D Download supported EBICS versions Mandatory

HIA U
Transmission of the subscriber key for identification
and authentication and encryption within the
framework of subscriber initialisation

Mandatory

HKD D Download customer’s customer and subscriber data Optional
HPB D Transfer the public bank key (download) Mandatory
HPD D Download bank parameters Mandatory

HSA U

Transmission of the subscriber key for identification
and authentication and encryption within the
framework of subscriber initialisation for subscribers
that have remote access data transmission via
FTAM

Optional

HTD D Download subscriber’s customer and subscriber
data Optional

HVD D Retrieve VEU state Conditional6
HVE U Add VEU signature Conditional6
HVS U VEU cancellation Conditional6
HVT D Retrieve VEU transaction details Conditional6
HVU D Download VEU overview Conditional6
HVZ D Download VEU overview with additional informations Conditional6

Further order types for the key management:

Identifica
tion

Direction
of trans-
mission

Text Format

INI U Send password initialisation Customer’s public key for the ES (see
Appendix Chapter 14)

6 Mandatory for German banks, currently not supported by French banks

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 278
 Status: Final Version 2.4.2

Identifica
tion

Direction
of trans-
mission

Text Format

PTK
 D Download customer protocol See Chapter 10 (Conditional6)

PUB U Send public key for signature
verification

Customer’s public key for the ES (see
Appendix Chapter 14)

SPR U Suspension of access authorisation Transmission of an ES file with a signature
for a dummy file that only contains a space

Further order types (which are independent from the key management process and the
EBICS schema, respectively) can be found in the document “EBICS Annex 2 – Order
Types”.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 279
 Status: Final Version 2.4.2

14 Appendix: Signature process for the electronic signature
The utilised security processes must provide the electronic signature for the data that is to be
transmitted. In doing this, the following requirements profile is to be fulfilled:

 The signature may only be provided by the signatory so that the signatory cannot deny
the signature and so that it can be verified that the origin of any misuse can only be the
responsibility of the signatory.

 All potential recipients must be able to verify the correctness of the signature, wherein it
must be additionally guaranteed that this verification is also possible at a later point in
time (e.g. by legal entities).

 The signature must be in direct connection to the signed data contents so that it
simultaneously authenicates the corresponding data contents, allowing any potential
recipient (especially legal entities, even at a later point in time) to also verify the data
contents by means of the signature (data integrity verification).

 The signature solution must be applicable to any contents.

 From a performance viewpoint, the signature process must be useable on less-powerful
PCs with passable computing performance.

 The administration requirement for necessary storage of the data required for generation
of the signature, and especially verification of the signature (identifications) must be as
low as possible (simple key management).

 The concrete technical solution must be compatible with common operating systems that
may be used by the signatory and the recipient.

 The characters restricted to the operating system (CR, LF and Ctrl-Z) are not included in
the calculation of hash values of the A005/A006 ES (analogous to A004 ES).

This requirements profile can only be fulfilled by the use of asymmetrical cryptographic
processes.

Use of the electronic signature is strongly recommended for all data transmissions that do
not serve purely for information acquisition, insofar as an alternative is not agreed in the
special arrangements for individual processes.

A detailed description of the mathematical processes and data structures used must be
published free of charge for each security process that is used. This description must be
sufficient to allow a functionally-compatible product to be created by any manufacturer.
Furthermore, a positive certificate of conformity for the process as a whole and in particular
the mathematical procedures utilised therein must be provided by an accreditation agency
specified by the German banking sector.

With due consideration for these requirements, it is mandatory that the electronic signature
process described in the following text is supported by the bank from 1st April 2002.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 280
 Status: Final Version 2.4.2

14.1 Version A005/A006 of the electronic signature
With due consideration for the requirements in chapter 14, it is mandatory that the electronic
signature process described in the following text is supported by the bank from September
1st , 2009.
For the signature processes A005 and A006 an interval of 1536 bit (minimum) and 4096 bit
(maximum) is defined for the key length.

14.1.1 Preliminary remarks and introduction
The following sub-chapters of chapter 14.1 contain a translation of the document [A005].
The document [A005] contains the description of two new signature mechanisms. The two
signature mechanisms are both based on the signature schemes of [PKCS1] and the usage
of SHA-256 as algorithm for the hashing, but differentiated by the usage of different methods
of [PKCS1] for padding.
Since the completion of [A005] the naming for the signature mechanisms has been changed.
In contrast to [A005], where the two new signature mechanisms still have been named
A005_V1.5 and A005_PSS, the mechanisms will be called A005 and A006 in future. The
following table shows the relationship between future names, the old names of [A005] and
the names used in [PKCS1]:

future name name in [A005] [PKCS1]

A005 A005_V1.5 EMSA-PKCS1-v1_5 with SHA-256

A006 A005_PSS (with SHA-256
hash value as input)

EMSA-PSS with SHA-256 (with
SHA-256 hash value as input)

The following description of the two new signature mechanisms is based on the
corresponding paragraphs of the specification of SECCOS 6 [SECCOS6]. Both signature
mechanisms will be supported by a ZKA signature card, which is based on SECCOS 6 and
which contains the ZKA signature application [ZKASigAnw].
For the calculation of an electronic signature the ZKA signature application [ZKASigAnw]
offers two different keys, the so called AUT-key and the so called DS-key. Since banking
applications will in future use for the calculations of electronic signatures the AUT-key as well
as the DS-key, the following special conditions of SECCOS 6 for the usage of these keys
must be taken into account:

- For the AUT-key the signature will be calculated using the command INTERNAL
AUTHENTICATE. If used with the PSS padding of [PKSC1], the SECCOS smart card
will always calculate a hash value over the input data within the execution of the
command INTERNAL AUTHENTICATE. Since the application usually also calculates
a hash value over the actual message M before calling INTERNAL AUTHENTICATE,
this procedure will result in calculating the hash value twice, i. e. the value
hash(hash(M)) will be calculated.

- For this reason A006 will be defined in such a way that a prior calculated hash value
over the message M will be used as input for the signature mechanism rather than
the message M itself.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 281
 Status: Final Version 2.4.2

The asymmetric cryptographic algorithms supported by the SECCOS ICC are based on the
RSA algorithm with odd public key exponent ([RSA]).
In chapter 14.1.3 of this document, the principle of construction and the key components of
the public and private RSA keys according to annex F of [EMV CA], and [PKCS1] for odd
public exponents are explained.
A signature algorithm consists of an algorithm for signature generation and an inverse
algorithm for message recovery. The standard signature algorithm supported by the ZKA
SECCOS ICC is described in chapter 14.1.3 of this document.
The described signature algorithm based on the RSA algorithm is used by the ZKA SECCOS
ICC only in the context of signature mechanisms. A signature mechanism defines, in which
way a message M is transformed into a byte sequence which serves as input for the
signature generation by a signature algorithm. The byte sequence generated by a signature
mechanism is referred to as Digital Signature Input (DSI).
The ZKA SECCOS ICC supports several signature mechanisms. In chapter 14.1.4 of this
document, the new so called A005 and A006 mechanisms are described which are both
based on PKCS #1 padding and the usage of SHA-256 as hash algorithm.

14.1.2 RSA
An RSA key pair consists of

• a public key PK and

• a private key SK.

The public and private key consist of key components. RSA keys are also called
asymmetric keys.
For the generation of an RSA key pair with an odd public key exponent e, two different
primes p and q (prime factors) are used. e must be coprime to (p-1) and (q-1).
The corresponding private exponent d is defined by

e*d ≡ 1 mod kgV(p-1, q-1).

The primes p and q as well as the private exponent d have to be kept secret.
The product of the primes n = p*q is called modulus.
The public key PK of the RSA key pair consists of the components

• modulus n and

• public exponent e.

The private key SK of the RSA key pair may be represented by components in two ways
(see [PKCS1]):
1. Representation of SK by the components:

• modulus n and

• private exponent d,

2. Representation of SK by the components:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 282
 Status: Final Version 2.4.2

• prime factor p,

• prime factor q,

• dp = d mod (p-1),

• dq = d mod (q-1) and

• qInv = q-1 mod p.

Of the first representation, only the component d has to be kept secret. The components of
the second representation are called Chinese Remainder Theorem-Parameters (CRT
parameters). All CRT parameters have to be kept secret.
The SECCOS ICC shall support the RSA algorithm with any odd public key exponent. In
most cases one of the odd public key exponents 3 or F4 = 216+1 is used.

In this document the following notation is used:
k denotes the bit length of the modulus n of an RSA key pair.
k is defined unambiguously by the equation 2k-1 <= n < 2k.
n is represented by a bit sequence:

n = bk bk-1 ... b1, with bk <> 0.

The integer value of n is defined by the leftmost bit bk being the most significant bit and the
rightmost bit b1 being the least significant bit of the binary representation of n.
For k there exist unique digits N >= 1 and 8 >= r >=1 with k = 8*(N-1) + r such that n may
also be represented by the bit sequence:

n = br br-1 ... b1 b8*(N-1) ... b8*(N-2)+1 ... b8 ... b1.

If r = 8, n may be represented as a sequence of N byte:
n = BN BN-1 ... B1, with BN <> '00'.

If r < 8, the bit sequence br br-1 ... b1 b8*(N-1) ... b8*(N-2)+1 ... b8 ... b1 8-r leading binary 0's are
added:

n = 0 ... 0 br br-1 ... b1 b8*(N-1) ... b8*(N-2)+1 ... b8 ... b1.

In this way n may be represented as a byte sequence
n = BN BN-1 ... B1, with BN <> '00'.

The integer value of n is not changed by the introduction of leading 0's in the binary
representation of n. Therefore the integer value of n is the same, whether n is represented by
a sequence of N byte or by a sequence of k bit.
N is the byte length of n.
N is defined unambiguously by the equation 28*(N-1)<= n < 28*N

14.1.3 Standard digital signature algorithm

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 283
 Status: Final Version 2.4.2

14.1.3.1 Standard signing function
Let SK be a private RSA key consisting of the modulus n and the private key exponent d or
consisting of CRT parameters. The associated public RSA key PK consists of the modulus n
and the public key exponent e.
Then a binary coded byte sequence x, its integer value between 0 and n-1 resulting from the
binary representation of x, may be signed with SK. Then x may be represented as a byte
sequence with a length of N byte and as a bit sequence with a length of k bit. The k-th bit of
the representing byte or bit sequence may have the value 1, but does not have to. If existent,
the bit b8*N ... bk+1 of the representing byte sequence have the value 0.
The following notation is used for the generation of a signature with the private key SK
consisting of n and d:

sign(SK)[x] = xd mod n

If the private key SK is represented by CRT parameters, sign(SK)[x] = xd mod n shall be
computed as follows:

sign(SK)[x] = s2 + h*q

where s2 and h shall be computed as follows:
s1 = xdp mod p,

s2 = xdq mod q,

h = qInv*(s1 - s2) mod p.

The exponentiations xd mod n, xdp mod p and xdq mod q shall be performed with the integer
value resulting from the binary representation of x.
The result of the signature generation is a byte sequence s resulting from the binary
representation of the integer value of the exponentiation xd mod n or from the binary
representation of the integer value of s2 + h*q. The integer value is between 0 and n-1. Then
s may be represented as a byte sequence with a length of N byte and as a bit sequence with
a length of k bit. The k-th bit of the representing byte or bit sequence may have the value 1,
but does not have to. If existent, the bit b8*N ... bk+1 of the representing byte sequence have
the value 0.

14.1.3.2 Standard recovery function
Let PK be a public RSA key consisting of the modulus n and the public key exponent e.
The plaintext may be recovered using PK from a binary coded byte sequence s, if the integer
value, resulting from the binary representation of s, is between 0 and n-1. Then s may be
represented as a byte sequence with a length of N byte and as a bit sequence with a length
of k bit. The k-th bit of the representing byte or bit sequence may have the value 1, but does
not have to. If existent, the bit b8*N ... bk+1 of the representing byte sequence have the value
0.
The following notation is used for the plaintext recovery:

recover(PK)[s] = se mod n

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 284
 Status: Final Version 2.4.2

The exponentiation se mod n shall be performed with the integer value resulting from the
binary representation of s.
The result of the plaintext recovery is an integer value between 0 and n-1. It may therefore
be represented as a byte sequence with a length of N byte and as a bit sequence with a
length of k bit. The k-th bit of the representing byte or bit sequence may have the value 1, but
does not have to. If existent, the bit b8*N ... bk+1 of the representing byte sequence have the
value 0.
It is valid for a RSA key pair PK and SK:

recover(PK)[sign(SK)[x]] = x

14.1.4 ZKA Signature Mechanisms A005 and A006
The digital signature mechanisms A005 and A006 are both based on the industry standard
[PKCS1] using the hash algorithm SHA-256. They are both signature mechanisms without
message recovery.
A hash algorithm maps bit sequences of arbitrary length (input bit sequences) to byte
sequences of a fixed length, determined by the Hash algorithm. The result of the execution of
a Hash algorithm to a bit sequence is defined as hash value.
The hash algorithm SHA-256 is specified in [FIPS H2]. SHA-256 maps input bit sequences of
arbitrary length to byte sequences of 32 byte length. The padding of input bit sequences to a
length being a multiple of 64 byte is part of the hash algorithm. The padding even is applied if
the input bit sequence already has a length that is a multiple of 64 byte.
SHA-256 processes the input bit sequences in blocks of 64 byte length.
The hash value of a bit sequence x under the hash algorithm SHA-256 is referred to as
follows:

SHA-256(x)

For building the value of the Digital Signature Input (DSI) out of the hash value [PKCS1]
defines two different encoding methods, called EMSA-PKCS1-v1_5 and EMSA-PSS.
Therefore two different digital signature mechanisms will be defined based on these two
encoding methods. The different mechanisms will be denoted A005 and A006.

14.1.4.1 Signature Mechanism A005
For the computation and verification of a digital signature with the signature mechanism
described in [PKCS1] using the encoding method EMSA-PKCS1-v1_5, the following points
have to be indicated:

• the hash algorithm HASH to be used,

• the byte length H of the generated hash values,

• the signature algorithm to be used and

• the maximal byte length N of the generated DSI to be allowed as input for the
signature algorithm.

The digital signature mechanism A005 is identical to EMSA-PKCS1-v1_5 using the hash
algorithm SHA-256. The byte length H of the hash value is 32.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 285
 Status: Final Version 2.4.2

Within ZKA smart cards RSA is used as signature algorithm. Therefore N is the byte length
of the modulus n of the applied RSA key.
In the following, digital signature generation and verification on the basis of the digital
signature mechanism A005 are described. The used abbreviations are defined in chapter
14.1.2.

14.1.4.1.1 Digital signature generation

According [PKCS1] (using the method EMSA-PKCS1-v1_5) the following steps shall be
performed for the computation of a signature for message M with bit length m.
1. The hash value HASH(M) of the byte length H shall be computed. In the case of A005

SHA-256(M) with a length of 32 bytes.

2. The DSI for the signature algorithm shall be generated.

The DSI is a sequence of N-1 byte constructed as follows:

Denotation Byte length Value
Block type 1 '01'
Padding field N-3-D 'FF..FF'
Separator 1 '00'
Digest-Info D BER-TLV coded data object with OID and

parameters of the hash algorithm and with the hash
value HASH(M)

Using SHA-256 the Digest-Info is structured as follows:

Tag Length
(in byte)

Value Description

'30' '31' Tag and length of SEQUENCE
'30' '0D' Tag and length of SEQUENCE
'06' '09' '60 86 48 01 65

03 04 02 01'
OID of the SHA-256 (2 16 840 1 101 3 4 2 1)

'05' '00' - TLV coding of ZERO
'04' '20' 'XX..XX' hash value

The byte length D of the Digest-info has the value 51. The padding field has a length
of N-54 byte. Since N has at least the value 128 (for the minimal key length of 1024
bits), it must be padded at least with 74 byte 'FF'.

3. A signature shall be computed using the DSI with the standard algorithm for the
signature generation described in section 14.1.3.1.

Since the DSI is a byte sequence of length N-1, the integer value resulting from the
binary representation of the DSI is always less than the value of the modulus n.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 286
 Status: Final Version 2.4.2

The signature may be represented as a byte sequence with the byte length N. In the
representation of the modulus n as a byte sequence the bit bk has the value 1 and the
bit b8*N b8*N-1 ... bk+1 have, if existent, the value 0. In the representation of the signature
as a byte sequence the bit b8*N b8*N-1 ... bk+1 therefore also shall have the value 0.

14.1.4.1.2 Digital signature verification

According to [PKCS1] (using the method EMSA-PKCS1-v1_5) the following steps shall be
performed for the verification of a signature. The signature to be verified and the message M'
require to be available as byte sequences.
1. The signature must be represented as a byte sequence with the byte length N. In the

representation of the signature as a byte sequence the bit b8*N b8*N-1 ... bk+1 ,if existent,
shall have the value 0. If this is not the case, the signature shall be rejected.

The integer value resulting from the binary representation of the signature shall be
less than n. If this is not the case, the signature shall be rejected.

2. The standard algorithm for plaintext recovery described in section 14.1.3.1 shall be
applied to the signature. The result has to be represented as a byte sequence of N-1
byte length. If this is not the case, the signature shall be rejected.

3. A DSI' with a length of N-1 byte shall be generated from the message M' as described
in steps 1. and 2. of section 14.1.4.1.1.

The DSI' shall be compared with the plaintext recovered in step 2. If the values match, the
verification of the signature was successful. Otherwise the signature shall be rejected.

14.1.4.1.3 Notation

The following notation is used for the computation of a signature for the message M with the
signature mechanism A005 and the private RSA key SK:

s = signA005(SK)[M].

The following notation is used for the verification of a signature s for the message M with the
signature mechanism A005 and the public RSA key PK:
 verifyA005(PK)[s,M].

14.1.4.2 Signature mechanism A006
For the computation and verification of a digital signature with the signature mechanism
described in [PKCS1] using the encoding method EMSA-PSS, he following points have to be
indicated:

• the hash algorithm HASH to be used,

• the byte length H of the generated hash values,

• the byte length S of the salt to be used,

• the mask generation function to used,

• the signature algorithm to be used,

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 287
 Status: Final Version 2.4.2

• the maximal bit length k of the generated DSI to be allowed as input for the signature
algorithm and

• the maximal byte length N of the generated DSI to be allowed as input for the
signature algorithm.

The digital signature mechanism A006 is based on EMSA-PSS using the hash algorithm
SHA-256. The byte length H of the hash value is 32.
The length S of the salt is defined by the used hash algorithm, i.e. the length S of the salt
shall be the byte length H of the hash value.
For A006 only the mask generation function MGF1 as described in [PKCS1] will be used.
Notation: k is length of the modulus n (in bits) of the applied RSA key. The length of the DSI
(in bits) is k – 1 and will be denoted as emBits. The length of the modulus n (in bytes) is
denoted as N. The length of the DSI (in bytes) is denoted as emLen.

14.1.4.2.1 Mask generation function MGF1

The mechanism described in [PKCS1], sections 8.1 and 9.1 uses a mask generation function
described in [PKCS1], section B.2.
MGF1 is a mask generation function based on a hash algorithm HASH, which calculates
hash values with the byte length H. MGF1 creates a byte sequence of a given length
maskLen from a given input value (seed) mgfSeed as described in the following:
1. Let T be an empty byte sequence.

2. For a counter from 0 to ⎡maskLen / H⎤ – 1, do the following:

a. Convert the counter to a byte sequence C with the length of 4 bytes.

b. Calculate the hash value HASH (mgfSeed | C) and concatenate this to the
byte sequence T:

T = T | HASH(mgfSeed | C)

3. The result MGF1(mfgSeed, maskLen) will be the leftmost maskLen bytes of the byte
sequence T.

Note that ⎡maskLen / H⎤ defines the smallest integer larger than or equal to (maskLen / H).

14.1.4.2.2 Digital signature generation according to EMSA-PSS

According to [PKCS1] (using the method EMSA-PSS), sections 8.1.1 and 9.1.1 the following
steps shall be performed for the computation of a signature for message M with bit length m.
1. The hash value HASH(M) of the byte length H shall be computed. If EMSA-PSS will

be used as basis for the signature mechanism A006, the hash value SHA-256(M) with
the length of 32 bytes will be calculated.

2. The input value DSI for the signature algorithm shall be generated as follows:

Generate a random number of S bytes to be used as salt.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 288
 Status: Final Version 2.4.2

Build the message M' as follows:

M' = '00 00 00 00 00 00 00 00' | HASH(M) | salt

Compute over M' the hash value HASH(M') of the byte length H.

Build a padding string PS with a length of emLen – H – S – 2 bytes consisting of '00'
bytes.

Let DB = PS | '01' | salt; DB is a byte sequence of the length emLen – H – 1.

Let dbMask = MGF(HASH(M'), emLen – H – 1) the result of the mask generation
function. If EMSA-PSS is used as basis for A006, the function MGF1 as described in
14.1.4.2.1 will be used.

Let maskedDB = DB ⊕ dbMask.

Set the leftmost 8*emLen – emBits bits of the leftmost byte in maskedDB to zero.

Let DSI = maskedDB | HASH(M') | 'BC'.

3. A signature shall be computed using the byte sequence DSI as input to the standard
signing function described in 14.1.3.1.

It has to be regarded, that the DSI is represented as a sequence of emLen byte. The
integer value resulting from the binary representation of the DSI is always less than
the value of the modulus n, since the bit length emBits of the DSI is less than the bit
length of the modulus.

The signature may be represented as a byte sequence with the byte length N. In the
representation of the modulus n as a byte sequence the bit bk has the value 1 and the
bit b8*N b8*N-1 ... bk+1 have, if present, the value 0. In the representation of the signature
as a byte sequence the bit b8*N b8*N-1 ... bk+1 therefore also shall have the value 0.

14.1.4.2.3 Digital signatur verification according to EMSA-PSS

According to [PKCS1] (using the method EMSA-PSS), sections 8.1.2 and 9.1.2, the following
steps shall be performed for the verification of a signature. The signature to be verified and
the message M must to be available as byte sequences.
1. The signature must be represented as a byte sequence with the byte length N. In the

representation of the signature as a byte sequence the bit b8*N b8*N-1 ... bk+1 ,if present,
shall have the value 0. If this is not the case, the signature shall be rejected.

The integer value resulting from the binary representation of the signature shall be
less than n. If this is not the case, the signature shall be rejected.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 289
 Status: Final Version 2.4.2

2. The standard function for plaintext recovery shall be applied as described in 14.1.3.2
to the signature. The result has to be represented as a byte sequence of emLen byte
length. If this is not the case, the signature shall be rejected.

3. The recovered plaintext shall be checked as follows:

The hash value HASH(M) of the byte length H shall be computed.

The least significant byte of the recovered plaintext shall have the value 'BC'. If this is
not the case, the signature shall be rejected.

Let maskedDB be the leftmost emLen – H – 1 bytes of the recovered plaintext and let
HM' be the next H bytes of the recovered plaintext.

If the leftmost 8*emLen – emBits bits of the most significant byte of maskedDB are
not all equal to zero, the signature shall be rejected.

Let dbMask = MGF (HM', emLen – H – 1), using the function MGF1.

Let DB = maskedDB ⊕ dbMask.

Set the leftmost 8*emLen – emBits bits of the leftmost byte in DB to zero.

If the emLen – H – S – 2 leftmost bytes of DB are not all equal to '00' or if the byte at
the position emLen – H – S – 1 does not have the value '01', the signature shall be
rejected.

Let salt be the rightmost S bytes of DB.

Let

M' = '00 00 00 00 00 00 00 00' | HASH(M) | salt

and compute the hash value HASH(M') of the byte length H.

If HM' = HASH(M') the verification of the signature was successful. Otherwise the signature
shall be rejected.

14.1.4.2.4 Notation for EMSA-PSS

The following notation is used for the computation of a signature for the message M with the
signature mechanism according to [PKCS1] using EMSA-PSS and the private RSA key SK:

s = signEMSA-PSS(SK)[M].

The following notation is used for the verification of a signature s for the message M with the
signature mechanism according to [PKCS1] using EMSA-PSS and the public RSA key PK:
 verifyEMSA-PSS(PK)[s,M].

14.1.4.2.5 Digital signature generation according to A006

As already mentioned banking applications will also use the AUT-key for the generation of a
signature, which was formerly intended only for authentication purposes. Using the command

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 290
 Status: Final Version 2.4.2

INTERNAL AUTHENTICATE with the AUT-key and the signature mechanism EMSA-PSS
the SECCOS smart card will always calculate internally a hash value over the input data of
the command. Since banking applications have to calculate signatures over messages which
are usually quite long, these messages cannot be given directly as input data with the
command INTERNAL AUTHENTICATE to the SECCOS smart card. For this reason the
banking application will also calculate a hash value over the message. This hash value will
be the input data of the command INTERNAL AUTHENTICATE. Hence, using the AUT-key
and EMSA-PSS, the hash value will be calculated twice. For this reason the signature
mechanism A006 will be defined as follows.
To calculate a signature s over a message M with the private key SK using the signature
mechanism A006 the following steps have to be performed:

- calculate the hash value HM = SHA-256(M).

- then calculate the signature s = signEMSA-PSS(SK)[HM].

14.1.4.2.6 Digital signature verification according to A006

To verify a signature s over a message M with the public key PK using the signature
mechanism A006 the following steps have to be performed:

- calculate the hash value HM = SHA-256(M).

- then verify the signature using verifyEMSA-PSS(PK)[s,HM].

14.1.4.2.7 Notation for A006

The following notation is used for the computation of a signature for the message M with the
signature mechanism A006 and the private RSA key SK:

s = signA006(SK)[M].

The following notation is used for the verification of a signature s for the message M with the
signature mechanism A006 and the public RSA key PK::
 verifyA006(PK)[s,M].

14.1.5 References
[A005] Signature Mechanism A005 of the ZKA Signature Application, 8.05.2006

[EMV CA] Europay International, MasterCard International and Visa International,
Integrated Circuit Card Specifications for Payment Systems, Annexes, Version
3.1.1, 31.05.1998

[FIPS H2] FIPS 180-2, Secure Hash Signature Standard, Federal Information Processing
Standards Publication 180-2, U. S. Department of Commerce / N.I.S.T.,
National Technical Information Service, August 2002

[PKCS1] PKCS #1: RSA Encryption Standard, Version 2.1, 14.06.2002

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 291
 Status: Final Version 2.4.2

[RSA] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public key cryptosystems, Communications of the ACM,
vol. 21, n. 2, 1978, 120-126

[SECCOS6] Interface Specifications for the SECCOS ICC, Secure Chip Card Operating
System (SECCOS), Version 6.1, 19.05.2006 (with revisions as on October
16th, 2006)

[ZKASigAnw] Interface Specifications for the SECCOS ICC, Digital Signature Application for
SECCOS 6, Version 1.1, 25.05.2007

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 292
 Status: Final Version 2.4.2

14.1.6 XML structure of signature versions A005/A006
The following diagram illustrates the structure of the bank-technical electronic signature (ES)
in structured form:

Diagram 104: OrderSignatureData – structured electronic signature

OderSignatureData may only be transmitted as part of an XML document with root
element UserSignatureData. Detailed information and illustrations see chapter 3.5.3 .

With the intention to utilize the ES in structured form outside of EBICS, all necessary data
structures have been defined in an independent XSD file (ebics_signature.xsd) which can be
downloaded from http://www.ebics.org/S001 ("schema target location").
For the transport of the public signature key the format SignaturePubKeyInfoType is
used (see chapter 4.2).

14.2 Version A004 of the electronic signature
With due consideration of the requirements in chapter 14, it is mandatory that the electronic
signature process described in the following text has to be supported by the bank until
September 1st 2009.

14.2.1 Introduction

The asymmetrical cryptographic algorithms used in Version A004 of the electronic signature
are based on the RSA algorithm with odd public exponents ([RSA], see Chapter 14.2.5.5).

The design principle and the key components of the public and private RSA keys in

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 293
 Status: Final Version 2.4.2

accordance with Appendix B of [EMV B2], Appendix A of [ISO DS2] and [PKCS1] are
explained for odd public exponents in chapter 14.2.2.

A signature algorithm comprises an algorithm for signature generation and a corresponding
inverse algorithm for recovery of clear text. The signature algorithm that is supported as
standard is described in Chapter 14.2.3 under “Signature generation”.

The described signature algorithm based on the RSA algorithm is only used within the
framework of signature processes. A signature process specifies the manner in which a
message M is to be prepared with regard to a byte sequence that is then entered into the
signature generation of a signature algorithm. The byte sequence generated by a signature
process is designated as Digital Signature Input (DSI).

The signature process that is supported for the generation of digital signatures is described
in Chapter 14.2.4. This signature process corresponds to DIN specification [DINSIG], (see
Chapter 14.2.5.5) of a signature application/function in accordance with SigG and SigV.

14.2.2 RSA key components
An RSA key pair comprises

 a public key PK and

 a private key SK

Public and private keys comprise key components. RSA keys are also known as
asymmetrical keys.

In order to generate an RSA key pair with an odd public exponent e, two different prime
numbers p and q (prime factors) are used for which e is relatively prime to (p-1) and (q-1).

The associated private exponent d is then determined by

e*d ≡ 1 mod kgV(p-1, q-1).

The prime numbers p and q and the private exponent d must be kept secret.

The product of the prime numbers n = p*q is called the modulus.

The public key PK of the RSA key pair comprises the components

 modulus n and

 public exponent e.

The private key SK of the RSA key pair can be represented by components in two ways (cf.
[PKCS1], see Chapter 14.2.5.5):

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 294
 Status: Final Version 2.4.2

1. Representation of SK by components:

• modulus n and

• private exponent d,

2. Representation of SK by components:

• prime factor p,

• prime factor q,

• dp = d mod (p-1),

• dq = d mod (q-1) and

• qInv = q-1 mod p.

Only the component d of the first representation must be kept secret. The components of the
2nd representation are known as Chinese Remainder Theorem parameters (CRT
parameters). All of the CRT parameters must be kept secret.

The RSA algorithm is supported with any odd public exponents that do not exceed the length
of the modulus. Generally, the odd public exponent F4 = 216+1 is used. The following notation
is used in this document:

k designates the bit length of the modulus n of an RSA key pair.

k is unambiguously defined by the equation 2k-1 <= n < 2k.

n can be represented as a sequence of bits

n = bk bk-1 ... b1, wherein bk <> 0.

The value of n as an integer is defined in that the first left-hand bit bk is the highest-value bit
and the last, right-hand bit is the lowest-value bit in the binary representation of n.

For k, the unambiguous numbers exist: N >= 1 and 8 >= r >=1 with k = 8*(N-1) + r. Then n
can also be written as a sequence of bits as

n = br br-1 ... b1 b8*(N-1) ... b8*(N-2)+1 ... b8 ... b1.

Where r = 8, n can be written directly as a sequence of N bytes:

n = BN BN-1 ... B1, wherein BN <> '00' and BN >= '80'.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 295
 Status: Final Version 2.4.2

If r < 8, 8-r binary 0 are placed before the bit sequence br br-1 ... b1 b8*(N-1) ... b8*(N-2)+1 ... b8 ...
b1:

n = 0 ... 0 br br-1 ... b1 b8*(N-1) ... b8*(N-2)+1 ... b8 ... b1.

again giving a byte sequence

n = BN BN-1 ... B1, wherein BN <> '00' and BN < '80'.

The integer value of n is not changed by the leading 0 in the binary representation, which
means that the representation of n as a sequence of N bytes does not change the number
value represented by a sequence of k bits.

N is the byte length of n.

Only moduli that are at least 128 bytes long are used. For technical reasons,

− only moduli with a maximum length of 256 bytes can be processed for the calculation
of a signature and

− only moduli with a maximum length of 252 bytes

can be processed for verification of a signature.

14.2.3 Signature algorithm

Signature generation

Let SK be a private RSA key comprising the modulus n and the private exponent d or
comprising the CRT parameters. Let the associated public RSA key PK comprise the
modulus n and the public exponent e.

Then SK can sign the binary-coded byte sequences x whose integer value resulting from the
binary representation of x lies between 0 and n-1. Thus x can be represented as a byte
sequence with a length of N bytes and as a bit sequence with a length of k bits. The kth bit in
the representing byte or bit sequence can - but does not have to - have the value 1. Where
present, bit b8*N ... bk+1 in the representing byte sequence have the value 0.

The following notation is used for signature generation with the private keys comprising n
and d:
 sign(SK)[x] = xd mod n
If the private key SK comprises the CRT parameters,
sign(SK)[x] = xd mod n is calculated as follows:

sign(SK)[x] = s2 + h*q

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 296
 Status: Final Version 2.4.2

wherein S2 and h are calculated as follows:
s1 = xdp mod p
s2 = xdq mod q
h = qInv*(s1 - s2) mod p.

Here, the potentiations xd mod n, xdp mod p, xdq mod q are displayed with the integer whose
value results from the binary representation of x.

The result of the signature generation is again a byte sequence s, that is the result of the
binary representation of the integer value of the power xd mod n or from s2 + h*q. This integer
value again lies between 0 and n-1. Thus s can be represented as a byte sequence with a
length of N bytes and as a bit sequence with a length of k bits. The kth bit in the representing
byte or bit sequence can - but does not have to - have the value 1. Where present, the bits
b8*N ... bk+1 in the represented sequence have the value 0.

Clear text recovery

Let PK be a public RSA key comprising the modulus n and the public exponent e.

Then using PK from a binary-coded byte sequence s, clear text can be recovered if the
integer value resulting from the binary representation of s lies between 0 and n-1. Thus s can
be represented as a byte sequence with a length of N bytes and as a bit sequence with a
length of k bits. The kth bit in the representing byte or bit sequence can - but does not have to
- have the value 1. Where present, the bits b8*N ... bk+1 in the represented byte sequence
have the value 0.

The following notation is used for clear text recovery:

 recover(PK)[s] = se mod n

Here, the potentiation se mod n is shown with the integer whose value results from the binary
representation of s.

The result of the clear text recovery is an integer whose value lies between 0 and n-1. It can
thus be represented as a byte sequence with a length of N bytes and as a bit sequence with
a length of k bits. The kth bit in the representing byte or bit sequence can - but does not have
to - have the value 1. Where present, the bits b8*N ... bk+1 in the represented sequence have
the value 0.

The following applies for an RSA key pair PK and SK:

 recover(PK)[sign(SK)[x]] = x

14.2.4 Signature process according to the DIN specification
In the following text, the messages M used in a signature process are understood as a bit
sequence with bit length m. A message can therefore be written as a sequence of bits bi

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 297
 Status: Final Version 2.4.2

 M = bm bm-1 ... b1

If M is understood as a binary number, the first, left-hand bit bm is the highest-value bit and
the last, right-hand bit b1 is the lowest-value bit. The highest value bit or bits of a message
can have the value 0.

Generally, m is a multiple of 8, so M can also be represented as a sequence of bytes.
Processes for coding messages as bit or byte sequences are not a part of the supported
signature process.

If a part of the message M that is to be signed is contained in the DSI as a byte sequence,
this part can be recovered from the signature by the clear text recovery feature of the
signature algorithm. In this case, it is a signature process with message recovery. The
recoverable part of the message M is designated as Mr. If the entire signed message can
be recovered from the signature, this is complete message recovery (M = Mr), otherwise it
is partial message recovery. The non-recoverable part of the message M is then
designated as Mn.

If the DSI does not contain any part of the message as a byte sequence, this is a signature
process without message recovery (M = Mn).

In order to verify a digital signature generated with a signature process, the non-recoverable
part of the signed message is required in addition to the signature.

The signature process described in the following text is specified in [DINSIG]. It is a signature
process without recovery that is based on [ISO DS2] (see Chapter 14.2.5.5 for both
references). It uses the following to generate the DSI:

 a hash algorithm and

 a format mechanism.

A hash algorithm displays bit sequences of any length (input bit sequences) on byte
sequences of a fixed length specified by the hash algorithm. The result of the application of a
hash algorithm on a bit sequence is designated as the hash value.
The signature process supported for the generation of digital signatures uses the hash
algorithm RIPEMD-160.

The hash algorithm RIPEMD-160 is specified in [RIPEMD] and [ISO HF3] (see Chapter
14.2.5.5). RIPEMD-160 displays input bit sequences of any length on a hash value of 20
bytes represented as a byte sequence. A component of the hash algorithm is the padding of
input bit sequences to a multiple of 64 bytes. Padding also takes place when the input bit
sequence already has a length that is a multiple of 64 bytes.

RIPEMD-160 processes the input bit sequences in blocks with a length of 64 bytes.
The hash value of an input bit sequence x under hash algorithm RIPEMD-160 is designated
as follows:

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 298
 Status: Final Version 2.4.2

 RIPEMD(x).

The following text describes the format mechanism of the signature process in accordance
with specification [DINSIG] ((see Chapter 14.2.5.5). The abbreviations used are defined in
Chapter 14.2.2.

Calculation of a signature

The following steps are carried out in accordance with specification [DINSIG] and [ISO DS2]
(see Chapter 14.2.5.5) for calculating a signature for message M of bit length m.

 The hash value RIPEMD(M) with a length of 160 bits is calculated.

Here, operating system-dependent characters (with Windows: CR, LF, CRLF and
Control-Z) are not used in configuring the hash value.

 The DSI is generated.
The DSI is a sequence of k bits, composed as follows:

Designation Bit length Value
Header 2 0 1
More-data bit 1 1, since , M = Mn
Padding field k-235 k-236 bit 0, followed by a bit 1 (limit bit)
Data field 64 Random number: The random number must be

dynamically generated and set in the DSI with each
signature calculation.

Hash value 160 RIPEMD(M)
Trailer 8 ‘BC’

Message M completely comprises the non-recoverable part Mn.
The first four bits of the DSI can only assume the value ‘6’, since k-236 > 0.

 A signature is calculated from the DSI with the algorithm for signature generation in

accordance with Chapter 14.2.3.

Here, it should be noted that the DSI can be represented as a sequence of k bits,
wherein the first (highest-value) bit has the value 0. The integer value of the DCI resulting
from the binary representation is therefore less than 2k-1 and hence less than the value of
the modulus n.

Furthermore, the DSI can be represented as a byte sequence, optionally in that a
maximum of 7 bits are placed before the first bit in the bit sequence with the value 0. This
byte sequence has the same integer value as the bit sequence that represents the DSI.

The signature can be represented as a byte sequence whose byte length is a maximum
of N. In the representation of the modulus n as a byte sequence, the bit bk has the value1
and bits b8*N b8*N-1 ... bk+1, where present, have the value 0. In the representation of the
signature as a byte sequence, the bits b8*N b8*N-1 ... bk+1 also have the value 0.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 299
 Status: Final Version 2.4.2

Verifying a signature

The following steps are carried out in accordance with specifications [DINSIG] and [ISO DS2]
(see Chapter 14.2.5.5) for verification of a signature. To carry this out, the signature s that is
to be verified and the message M' of bit length m' must be present.

 It must be possible to represent the signature as a byte sequence whose byte length is a

maximum of N. In the representation of s as a byte sequence, the bits b8*N b8*N-1 ... bk+1,
where present, must have the value 0. If this is not the case, the signature is rejected.
The integer value resulting from the binary representation of s must lie between 0 and n-
1. If this is not the case, the signature is rejected.

 The algorithm for clear text recovery in accordance with Chapter 14.2.3 is applied to the
signature. The result is a bit sequence bk ... b1, designated DSI'. DSI’ must satisfy the
following requirements:

 The lowest-value byte comprising b8 ... b1 has the value 'BC'.

 The bit bk-1 has the value 1 and all higher-value bits have the value 0.

 The bit bk-2 (‘More Data’ bit) has the value 1.

 The padding field comprises (k – 236) zeroes and a 1 (limit bit).

If the requirements are not fulfilled the signature is rejected.

 A hash value’ is derived from DSI’. The hash value' comprises the 160 bits that precede
the trailer 'BC'.

 The hash value RIPEMD(M') is calculated and compared with the hash value'. If the
values are identical the signature verification was successful. Otherwise the signature is
rejected.

Notation

The following notation is used for calculation of a signature to a message M with the
signature process in accordance with [DINSIG], the signature algorithm RSA and the private
RSA key SK:

 signDINSIG(SK)[M].

For verification of a signature s to a message M with the signature process in accordance
with [DINSIG], the signature algorithm RSA and the private RSA key PK:

 verifyDINSIG(PK)[s,M].

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 300
 Status: Final Version 2.4.2

14.2.5 Signature format A004

14.2.5.1 Signature format
Version A004 of the electronic signature is based on RSA signatures that are generated with
keys whose moduli have a length of 1024 bits. The A004 signature supports the RSA
algorithm with any odd public exponents. Generally, the odd public exponent F4 = 216+1 is
used. The padding format “ISO 9796 Part 2 with random number” is used as a padding
format, described in the “DIN specification for interfaces to chip cards with digital signature
application/function in accordance with SigG and SigV”.

14.2.5.2 Determination of the hash value via the file that is to be signed
The signature process that is utilised in Version A004 of the electronic signature uses the
hash algorithm RIPEMD-160.

RIPEMD-160 displays input bit sequences of any length on a hash value of 20 bytes
represented as a byte sequence. A component of the hash algorithm is the padding of input
bit sequences to a multiple of 64 bytes. Padding also takes place when the input bit
sequence already has a length that is a multiple of 64 bytes. RIPEMD-160 processes the
input bit sequences in blocks with a length of 64 bytes. The padding of the message to the
corresponding block size is specified in the description of the hash process. The initialisation
vector that is to be used is also specified in the description of the hash process.

The hash value specified in the initialisation letter is also calculated in accordance with this
process via the 256 bytes – comprising public exponents and modulus.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 301
 Status: Final Version 2.4.2

14.2.5.3 Structure of the signature file
Before transmission of an electronic signature, this is set in a signature file that is to be
transmitted separately and has the following structure:

Contents Length in
bytes

Data
format7

Setting Explanation

Version number 4 an ‘A004’
Modulus length 4 n ‚1024’
Order type 3 an e.g. ’IZV’ Order abbreviation of

the original file
ES 128 binary ‘0, ..., 0, SIGNATURE’ right-justified
User ID 8 an e.g. ‘A2B2C2D2’
Original file 128 an Local file name of

the original file
Date/time file created 16 an yyyymmddX’20’hhmmssX

’20’

Date/time signature 16 an yyyymmddX’20’hhmmssX
’20’

Freely-useable field 8 binary X’00’ Currently unused
Reserve 197 binary X’00’ Currently unused

The field "Original file" does not have to be provided. There will be no verification during the
ES verification.

14.2.5.4 Structure of the public key file (INI file)

Contents No. of bytes Setting/explanation
Version number 4 ASCII ‘A004’

This field identifies the utilised ES process (A004).
User ID 8 ASCII ‘A2B2C2D2’

This field contains the institution-specific user ID. The result of
this is that the customer system must enter the corresponding
user ID before transmission of the public key file.

LExponent 4 ASCII ‘1024’, length of the exponents, value in bits
Exponent 128 binary 00...010001 (Hex)

This field can contain values to a maximum of 1024 bits.
LModulo 4 ASCII ‘1024’, length of modulo, value in bits
Modulo 128 binary 0...bc7bdc...87

This field can contain values to a maximum of 1024 bits.
Reserve 236 ASCII Fill up with X’20’

7 an = alphanumeric; n = numeric; values in ASCII format are left-justified and are filled to the
right with blank spaces (X’20’). Values in binary format are right-justified and are filled to the
left with X’00’.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 302
 Status: Final Version 2.4.2

Values in ASCII format are set left-justified and are filled out with blanks X’20’ to the right.
Values in binary format are set right-justified and are filled out with X’00’ to the left.

14.2.5.5 References

[DINSIG] DIN specification for interfaces to chip cards with digital signature

application/function in accordance with SigG and SigV, DIN NI-17.4, Version
1.0, 15.12.1998

[EMV B2] EMV2000, Integrated Circuit Card Specification for Payment Systems, Book 2,
Security and Key Management, Version 4.0, EMVCo, December 2000

[ISO DS2] ISO 9796 - 2, Information technology - Security techniques - Digital signature
scheme giving message recovery, Part 2: Mechanisms using a hash function,
1997

[ISO HF3] ISO 10118 - 3, Information technology - Security techniques - Hash-functions,
Part 3: Dedicated hash functions, 1998

[PKCS1] PKCS #1: RSA Cryptography Standard, Version 2.0, 1.10.1998
[RIPEMD] H. Dobbertin, A. Bosselaers, B. Preneel, RIPEMD-160: A strengthened

version of RIPEMD, 1996
[RSA] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital

signatures and public key cryptosystems, Communications of the ACM, vol. 1,
n. 2, 1978, 120-126

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 303
 Status: Final Version 2.4.2

15 Appendix: Encryption process V001

15.1 Workflows at the sender’s end

Generation of the secret DES key (2-key triple DES)

Two random bit strings DEKleft and DEKright are generated, each with a length of 64 bits. The
link between DEKleft and DEKright is designated as DEK.
Let

 DEK = DEKleft||DEKright = x127, ... , xo
with DEKleft = x127, ... , x64 and DEKright = x63, ... , xo.

In the interpretation of the DES key as a natural number, it is assumed that the respective
left-hand bit (x127 or x63) of the key is understood as the highest-value bit of the number.

Verifying the secret DES key

The generated random numbers that are used as right and left key halves of the 2-key triple
DES are to be verified to ensure that it is not a weak or semi-weak DES key.

Weak DES keys
01 01 01 01 01 01 01 01
FE FE FE FE FE FE FE FE
1F 1F 1F 1F 0E 0E 0E 0E
E0 E0 E0 E0 F1 F1 F1 F1

Semi-weak DES keys
01 FE 01 FE 01 FE 01 FE
FE 01 FE 01 FE 01 FE 01
1F E0 1F E0 0E F1 0E F1
E0 1F E0 1F F1 0E F1 0E
01 E0 01 E0 01 F1 01 F1
E0 01 E0 01 F1 01 F1 01
1F FE 1F FE 0E FE 0E FE
FE 1F FE 1F FE 0E FE 0E
01 1F 01 1F 01 0E 01 0E
1F 01 1F 01 0E 01 0E 01
E0 FE E0 FE F1 FE F1 FE
FE E0 FE E0 FE F1 FE F1

Preparation for DEK encryption

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 304
 Status: Final Version 2.4.2

The 128 bit DEK that is interpreted as a natural number is filled out with null bits to 768 bits in
front of the highest-value bit. The result is called PDEK.

Encryption of the secret DES key

PDEK is then encrypted with the recipient’s public key of the RSA key system and is then
expanded with leading null bits to 1024 bits.

The result is called EDEK. It must be ensured that EDEK is not equal to DEK.

Encryption of the messages

Padding of the message:
The method Padding with Octets in accordance with ANSI X9.23 is used for padding the
message, i.e. in all cases, data is appended to the message that is to be encrypted.

Application of the encryption algorithm:
The message is encrypted in CBC mode in accordance with ANSI X3.106 with the secret key
DEK according to the 2-key triple DES process as specified in ANSI X3.92-1981.

In doing this, the following initialisation value “ICV” is used: X ‘00 00 00 00 00 00 00 00’.

15.2 Workflows at the recipient’s end

Decryption of the DES key
The leading 256 null bits of the EDEK are removed and the remaining 768 bits are decrypted
with the recipient’s secret key of the RSA key system. PDEK is then present. The secret DES
key DEK is obtained from the lowest-value 128 bits of PDEK, this is split into the individual
keys DEKleft and DEKright.

Decryption of the message
The encrypted original message is decrypted in CBC mode in accordance with the 2-key
triple DES process via the secret DES key (comprising DEKleft and DEKright). In doing this, the
following initialisation value ICV is again used.

Removal of the padding information
The method “Padding with Octets” according to ANSI X9.23 is used to remove the padding
information from the decrypted message. The original message is then available in decrypted
form.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 305
 Status: Final Version 2.4.2

16 Appendix: Standards and references
The EBICS detailed concept refers to a number of processes, algorithms and format
stipulations.

The associated standard document identifications and links to the referenced documents are
listed in the following section.

Standard Characteristics Standard
identification Reference

EBICS

Multi-bank
capable
interface for
Internet-based
communication

H003 http://www.ebics.org/H003 (XML-Schema)

ZIP
Universal
compression
algorithm

RFC 1950,
RFC 1951

http://www.ietf.org/rfc/rfc1950.txt
http://www.ietf.org/rfc/rfc1951.txt

base64
Coding format
for textual byte
code transport

RFC 1421,
RFC 2045

http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc2045.txt

UTF-8
Coding format
for Unicode
characters

RFC 3629
(ISO 10646)

http://www.ietf.org/rfc/rfc3629.txt

HTTP 1.1
Internet
application
protocol

RFC 2616
http://www.ietf.org/rfc/rfc2616.txt

TLS
Transport layer
encryption

RFC 2246,
RFC 3268
(+AES),
RFC 2818
(HTTP via
TLS)

http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc2818.txt

TCP
Internet
transmission
protocol

RFC 793
http://www.ietf.org/rfc/rfc793.txt

IP(v4)
Internet network
protocol

RFC 791
http://www.ietf.org/rfc/rfc791.txt

XML
Hierarchical
documentation
language

(W3C-Rec.)
http://www.w3.org/TR/REC-xml/

XML
signature

Process for
digital signature
of XML

RFC 3275
http://www.ietf.org/rfc/rfc3275.txt
http://www.w3.org/TR/xmldsig-core/

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 306
 Status: Final Version 2.4.2

documents

X.509v3
Format and
profile for PKI
certification data

RFC 3280
http://www.ietf.org/rfc/rfc3280.txt

Country
codes

Format for
country
abbreviations

RFC 1766,
ISO 639

http://www.ietf.org/rfc/rfc1766.txt

Time
stamp

Format for date
& time stamp

ISO 8601
(2004)

http://www.iso.org/iso/en/CatalogueDetail»
Page.CatalogueDetail?CSNUMBER=40874

SHA-1 Hash algorithm
RFC 3174,
FIPS 180-2
(SHA gen.)

http://www.ietf.org/rfc/rfc3174.txt
http://csrc.nist.gov/publications/fips/fips»
180-2/fips180-2withchangenotice.pdf

Triple
DES,
3DES

Symmetrical
encryption
algorithm

FIPS 46-3
http://csrc.nist.gov/publications/fips/fips46-»
3/fips46-3.pdf

AES
Symmetrical
encryption
algorithm

FIPS 197
http://csrc.nist.gov/publications/fips/fips197/»
fips-197.pdf

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 307
 Status: Final Version 2.4.2

17 Appendix: Glossary

3DES Triple DES, a version of the “Digital Encryption Standard“ DES is a

symmetrical encryption algorithm with a working key length of 56 bits.
In order to meet modern security requirements, with 3DES the
algorithm is displayed three times in sequence in the same data block
and a key with a working length of 112 bits (2-key 3DES) or 168 bits
(3-key 3DES). In the EBICS context, 3DES is used for TLS (in
accordance with RFC 2246). Furthermore, the version 2-key DES is
used in the encryption of bank-technical order data and bank-technical
signatures.

AES “Advanced Encryption Standard”: a symmetrical encryption algorithm
that is intended to replace DES. In the EBICS context, AES is used for
TLS as well as for the encryption of bank-technical order data (in
accordance with RFC 3268).

Bank system Components within the responsibility sphere of the financial institution
that are involved in the implementation of an EBICS transaction. This
includes both the bank-technical target system and the HTTP server(s)
that receive the EBICS message and forward it to the bank-technical
target system.

Bank-technical
electronic
signature

Subscriber’s ES of signature class “E”, “A” or “B”, via which the
processing of an order is authorised.

Bank-technical
key
(public/private)

RSA key pair whose private key is used for configuring the bank-
technical electronic signature and whose public key is used for its
verification.

Bank-technical
order data

Data that is required for the processing of an order. The format of this
data depends on the order type. The majority of the data formats that
are used in EBICS have already been defined. The data formats of the
order types that have been newly defined for EBICS (such as e.g.
Distributed Electronic Signature order types) are defined in EBICS by
means of an XML schema.
The order data of an order is transparently embedded (in compressed,
encrypted form) in EBICS messages.

Bank-technical
target system

Component within the responsibility sphere of the financial institution
that is responsible for the administration of customers/subscribers and
the processing of bank-technical orders. Within the framework of the
EBICS specification, the bank-technical target system can be viewed
as a “secure black box”.

base64 Coding algorithm and format in accordance with RFCs 1421 & 2045.
The result of a base64 coding run can be completely represented in
ASCII.

Client Communications unit that sends EBICS requests and receives EBICS
responses. See also “Customer system”.

Control data Data in an EBICS message that is required for controlling the flow of
an EBICS transaction. This is data for authentication of the subscriber

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 308
 Status: Final Version 2.4.2

by the bank system, data for identification of the next transaction step
that is to be carried out, or technical return codes, or order parameters,
or data for preliminary verification or bank-technical return codes.

Customer Organisational unit (company or private person) that concludes a
contract with the financial institution. In this contract it will be agreed as
to which business transactions the customer will conduct with the
financial institution, which accounts are concerned, which of the
customer’s subscribers work with the system and the authorisations
that these subscribers will possess.

Customer system Components that are used by subscribers to upload orders to the
financial institution and to obtain information on orders or subscriber
accounts from the financial institution.

Distributed bank-
technical
signature

See “Distributed Electronic Signature”.

Distributed
Electronic
Signature

A process wherein bank-technical electronic signatures can be
supplied for a particular order, irrespective of time or place. See
Chapter 8 for details.

Download
transaction

EBICS transaction for transmission of a download order. The
transaction phases of a download transaction are: transaction
initialisation, data transfer, acknowledgement of the download data.

EBICS message EBICS request from a subscriber or EBICS response from the financial
institution. EBICS messages are mainly composed of control data, the
identification and authentication signature and bank-technical data.

EBICS request Request from a subscriber in XML format that has been defined in
EBICS.

EBICS response Response from the financial institution in XML format that has been
defined in EBICS.

EBICS transaction Sequential flow of EBICS transaction phases that are necessary to
transmit an order to the bank-technical target system. EBICS
transactions can be upload or download transactions.

EBICS transaction
administration

Bank system component that is responsible for the administration of
EBICS transactions.

EBICS transaction
phase

Sequence of connected EBICS transaction steps. A differentiation is
drawn in EBICS between the following transaction phases:
Transaction initialisation (“initialisation”), data transfer (“transfer”) and
acknowledgement (“receipt”) .

EBICS transaction
step

Pair comprising an EBICS request and the associated EBICS
response. An EBICS request is always initiated by the customer
system.

Electronic
signature (ES)

Voluntary signature of the order data in an upload order by a
subscriber with which the corresponding order can be submitted or
authorised, or also a financial institution signature for download data.
In EBICS, ES’s are used in accordance with the Appendix (Chapter
14) that are at least configured in accordance with process A004

Encryption key
(public/private)

RSA key pair whose public key is used by the communications
partners for encryption of the symmetrical transaction key and whose

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 309
 Status: Final Version 2.4.2

private key is used by owners for decrypting the same transaction key.
ES See “Electronic signature”.
ES signature key See “Bank-technical key (public/private)”.
Host ID EBICS host ID for the identification of the EBICS bank computer

system in every request message of the customer system. This host
ID does not have to be identical with the host ID for the FTAM process.
The financial institution communicates the EBICS host ID together with
the URL for the bank access to the customer.

Identification and
authentication key
(public/private)

RSA key pair whose private key is used for configuring the
identification and authentication signature and whose public key is
used for its verification.

Identification and
authentication
signature

Digital signature to ensure the authenticity of the control data in an
EBICS message. XML Signature is used as a signature format.

Key management Component of the bank system that is responsible for the assignment
of public keys to subscribers and that controls access to the keys it
administrates.

Order Bank-technical or system-related business transaction whose type is
identified via the so-called order type.

Order attributes Five-digit alphanumeric code that contains information for an EBICS
transaction about the type of data transmitted (ES’s relating to an
existing order, order data together with bank-technical ES’s, order data
with transport signature) as well as the type of compression and
encryption of this data. See Chapter 12.3 for details.

Order data See “Bank-technical order data”
Order parameters Additional order parameters that the client transmits to the server in

the first transaction step. See Chapter 3.11.
Order ID Unambiguous order ID of a customer for the transmission from customer to

financial institution. Is part of the EBICS request at the submission of the
order and especially serves the synchronizing of order data and electronic
signatures.
The application is to ensure the allocation of unambiguous order IDs per each
customer ID and per order type.
Structure of a 4-digit order ID:
1st position: Alphabetic character (A–Z), selectable freely
2nd to 4th position: Alphanumerical characters (A–Z or 0–9) in ascending
order

Order type Three-figure alphanumeric code that identifies the type of order. The
standardised, system-related and reserved order types are listed in the
Appendix (Chapter 13) and document “EBICS Annex 2 Order Types”.
New EBICS order types are recognisable by their first letter “H”. See
Chapter 3.10 for details.

OrderAttribute See “Order attributes”.
OrderData See “Order type”.
Partner See “Customer”
Segmentation Division of the data volume of the order data after compression,

encryption and base64-coding into segments with a size of max. 1 MB.
See also Chapter 7.

Server Communications unit that receives EBICS requests and sends EBICS

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 310
 Status: Final Version 2.4.2

responses. See also “Bank system”.
Signature class Relates to subscriber’s ES’s.

EBICS defines the following signature classes: Individual signature
(type “E“), First signature (type “A“), Second signature (type “B“),
Transport signature (type “T“). See Chapter 3.5.1 for details.

Subscriber Human users (“non-technical subscribers”) or a technical system
(“technical subscriber”) that is/are assigned to a customer. Is identified
by the combination of subscriber ID and customer ID.
The technical subscriber serves for the data exchange between
customer and financial institution. It must not be put on the same level
as a technical ID for a service provider.

Subscriber
initialisation

A process according to which the public subscriber keys are
transmitted to the financial institution and are then activated by the
financial institution. After successful execution of subscriber
initialisation, subscriber are set in the bank system to the state
“Ready”.

TLS “Transport Layer Security”: Protocol in accordance with RFCs 2246 &
3268 for the cryptographic security of messages that use TCP/IP as a
transmission protocol. In the EBICS context, TLS is used for the
transport encryption of HTTP messages (HTTPS).

Transaction See “EBICS transaction”.
Transaction key Symmetrical key that is used within the EBICS transaction for the

encryption of bank-technical data.
Transaction
management

See “EBICS transaction management”.

Transaction phase See “EBICS transaction phase”.
Transaction step See “EBICS transaction step”.
Transport
signature (TES)

Subscriber’s ES of signature class “T” via which the order is submitted
(but its processing is not authorised).

Trust anchor In the context of certification verification, a trust anchor (point of trust)
is a certificate that is considered trustworthy. This is usually a
certificate from a CA (Certification Authority).

Upload
transaction

EBICS transaction for transmission of an upload order. The transaction
phases of an upload transaction are: Transaction initialisation, data
transfer.

UTF-8 “Unicode Transformation Format“, a character encoding standard
according to RFC 3629.

VEU See “Distributed Electronic Signature”.
ZIP Loss-free compression algorithm according to RFCs 1950 and 1951.

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 311
 Status: Final Version 2.4.2

18 Table of diagrams
Diagram 1: XML schema symbols 11

Diagram 2 Nesting of activities 12

Diagram 3: Root structure of the EBICS protocol 20

Diagram 4: XML structures BankSignatureData and UserSignatureData for the ES’s
of an order, both in binary and structured format 27

Diagram 5: X509DataType 31

Diagram 6: Possible characteristics for the order parameters (OrderParams) 34

Diagram 7: Example of the sequence of an EBICS transaction for an upload order 37

Diagram 8: Example of the sequence of an EBICS transaction for a download order 38

Diagram 9: Definition of the XML schema type AuthenticationPubKeyInfoType 41

Diagram 10: Definition of the XML schema type SignaturePubKeyInfoType 41

Diagram 11: Definition of the XML schema type EncryptionPubKeyInfoType 42

Diagram 12: Necessary steps prior to actual processing of business transactions via
EBICS 44

Diagram 13: Process example: Subscriber initialisation followed by download and
verification of of the bank keys 45

Diagram 14: Processing of an INI request at the bank’s end 48

Diagram 15: Processing an HIA request at the bank’s end 51

Diagram 16: State transition diagram for subscribers 54

Diagram 17: Definition of the XML schema element SignaturePubKeyOrderData for
INI order data (identical to PUB, see respective chapter) 55

Diagram 18: Definition of the XML schema element HIARequestOrderData for HIA
order data 56

Diagram 19: EBICS request for order type INI 57

Diagram 20: EBICS response for order type INI 58

Diagram 21: EBICS request for order type HIA 59

Diagram 22: EBICS response for order type HIA 60

Diagram 23: Processing of an HPB request at the bank’s end 61

Diagram 24: Definition of the XML schema element HPBRequestOrderData for HPB
order data 63

Diagram 25: EBICS request for order type HPB 65

Diagram 26: EBICS response for order type HPB 66

Diagram 27: Changing the bank-technical subscriber key via PUB 70

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 312
 Status: Final Version 2.4.2

Diagram 28: Changing the authentication key and encryption key via HCA 71

Diagram 29: Changing the bank-technical subscriber key, the authentication key, and
encryption key via HCS 72

Diagram 30: Definition of the XML schema element SignaturePubKeyOrderData for
PUB order data (identical to INI, see own chapter) 73

Diagram 31: Definition of the XML schema element HCARequestOrderData for HCA
order data 73

Diagram 32: Definition of the XML schema element HCSRequestOrderData for HCS
order data 74

Diagram 33: Process example: Subscriber initialisation with HSA, followed by
download and verification of the bank keys 77

Diagram 34: Expanded state transition diagram for subscribers 78

Diagram 35: Processing of an HSA request at the bank’s end 80

Diagram 36: Definition of the XML schema element HSARequestOrderData for HSA
order data 81

Diagram 37: EBICS request for order type HSA 83

Diagram 38: EBICS response for order type HAS 83

Diagram 39: XML schema type definition for the transmission of data for preliminary
verification of an order 90

Diagram 40: Error-free sequence of an upload transaction 92

Diagram 41: EBICS request for transaction initialisation for order type IZV 96

Diagram 42: XML document that contains the ES’s of the signatory of the IZV order 96

Diagram 43: EBICS response for transaction initialisation for order type IZV 97

Diagram 44: EBICS request for transmission of the last order data segment for order
type IZV 98

Diagram 45: EBICS response for transmission of the last order data segment for
order type IZV 100

Diagram 46: Detailed description of the process step “Authentication check of the
EBICS request” 105

Diagram 47: Detailed description of the process step “User related order checks” 106

Diagram 48: Detailed description of the process step “Creation of an EBICS
transaction” 107

Diagram 49: Processing the EBICS request from transaction initialisation 108

Diagram 50: Detailed description of the process step “EBICS transaction verification” 111

Diagram 51: Processing an EBICS request for transmission of an order data segment
(part 1) 112

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 313
 Status: Final Version 2.4.2

Diagram 52: Processing an EBICS request for transmission of an order data segment
(part 2) 113

Diagram 53: Termination of the recovery of an upload transaction due to the
maximum number of recovery attempts being exceeded 116

Diagram 54: Recovery of an upload transaction with explicit synchronisation between
customer system and bank system 117

Diagram 55: EBICS response with technical error EBICS_TX_RECOVERY_SYNC 118

Diagram 56: Error-free sequence of a download transaction 119

Diagram 57: EBICS request for transaction initialisation for order type STA 121

Diagram 58: EBICS response for transaction initialisation for order type STA 123

Diagram 59: EBICS request for transmission of the next order data segment for order
type STA 125

Diagram 60: EBICS response for transmission of the last order data segment for
order type STA 126

Diagram 61: EBICS request for the acknowledgement of download data 127

Diagram 62: EBICS response for the acknowledgement of download data 128

Diagram 63: Processing the EBICS request of the initialisation phase of a download
transaction 130

Diagram 64: Detailed description of the process step “Download transaction
verification” 132

Diagram 65: Processing an EBICS request for requesting a order data segment 133

Diagram 66: Processing of an EBICS request for acknowledgement within the
framework of a download transaction 134

Diagram 67: Termination of the recovery of a download transaction due to the
maximum number of recovery attempts being exceeded 136

Diagram 68: Recovery of a download transaction with explicit synchronisation
between customer system and bank system 137

Diagram 69: EBICS response with technical error EBICS_TX_RECOVERY_SYNC 138

Diagram 70: Flow diagram for VEU 145

Diagram 71: HVUOrderParams 148

Diagram 72: HVUResponseOrderData 150

Diagram 73: HVUSigningInfoType (to SigningInfo) 150

Diagram 74: SignerInfoType (to SignerInfo) 151

Diagram 75: HVUOriginatorInfoType (to OriginatorInfo) 151

Diagram 76: HVZOrderParams 157

Diagram 77: HVZResponseOrderData 159

EBICS specification

EBICS detailed concept, Version 2.4.2

© Z E N T R A L E R K R E D I T A U S S C H U S S Page: 314
 Status: Final Version 2.4.2

Diagram 78 HVZPaymentOrderDetailsStructure 160

Diagram 79: HVDOrderParams 170

Diagram 80: HVDResponseOrderData 173

Diagram 81: HVTOrderParams 178

Diagram 82: HVTResponseOrderData 183

Diagram 83: HVTOrderInfoType (to OrderInfo) 183

Diagram 84: HVTAccountInfoType (to AccountInfo) 184

Diagram 85: HVEOrderParams 193

Diagram 86: HVSOrderParams 196

Diagram 87: HAAResponseOrderData 199

Diagram 88: HPDResponseOrderData 202

Diagram 89: HPDAccessParamsType (to AccessParams) 203

Diagram 90: HPDProtocolParamsType (to ProtocolParams) 204

Diagram 91: HPDVersionType (to Version) 205

Diagram 92: HKDResponseOrderData 211

Diagram 93: PartnerInfoType (to PartnerInfo) 212

Diagram 94: AddressInfoType (to AddressInfo) 213

Diagram 95: BankInfoType (to BankInfo) 213

Diagram 96: AuthOrderInfoType (to OrderInfo) 214

Diagram 97: UserInfoType (to UserInfo) 214

Diagram 98: UserPermissionType (to Permission) 215

Diagram 99: HTDResponseOrderData 227

Diagram 100: HEVRequest / HEVResponse 231

Diagram 101: FULOrderParams 232

Diagram 102: FDLOrderParams 233

Diagram 103: Definition of the XML schema type DataEncryptionInfoType 264

Diagram 104: OrderSignatureData – structured electronic signature 292

	1 Overview and objectives of EBICS
	1.1 Objective of the cooperation
	1.2 General objectives of EBICS
	2 Definitions
	2.1 Terms
	2.2 Notation
	2.2.1 XML
	2.2.1.1 XML schema
	2.2.1.2 XML documents

	2.2.2 Flow diagrams
	2.2.3 Other notation

	2.3 Data types

	3 Design decisions
	3.1 OSI model from EBICS perspective
	3.1.1 TCP/IP as package-orientated transmission layer
	3.1.2 TLS as transport encryption
	3.1.2.1 Pre-distribution and verification of the trust anchors
	3.1.2.2 Server authentication

	3.1.3 HTTP(S) as a technical basic protocol
	3.1.4 XML as an application protocol language

	3.2 Compression, encryption and coding of the order data
	3.3 Segmentation of the order data
	3.4 Recovering the transmission of order data (recovery) [optional]
	3.5 Electronic signature (ES) of the order data
	3.5.1 Subscriber’s ES
	3.5.2 Financial institution’s ES [planned]
	3.5.3 Representation of the ES’s in EBICS messages

	3.6 Preliminary verification [optional]
	3.7 Technical subscribers
	3.8 Identification and authentication signature
	3.9 X.509 data [planned]
	3.10 Supported order types
	3.11 Order parameters
	3.12 Flow of the EBICS transactions

	4 Key management
	4.1 Overview of the keys used
	4.2 Representation of the public keys
	4.3 Actions within key management
	4.4 Initialisation
	4.4.1 Subscriber initialisation
	4.4.1.1 General description
	4.4.1.2 INI
	4.4.1.3 HIA
	4.4.1.4 Initialisation letters
	4.4.1.5 Activation of the subscriber by the financial institution
	4.4.1.6 Description of the EBICS messages
	4.4.1.6.1 Format of the order data
	4.4.1.6.2 Description and example messages

	4.4.2 Download of the financial institution’s public keys
	4.4.2.1 General description
	4.4.2.2 Description of the EBICS messages
	4.4.2.2.1 Format of the order data
	4.4.2.2.2 Description and example messages

	4.5 Suspending a subscriber
	4.5.1 Alternatives
	4.5.2 Revoking a subscriber via SPR

	4.6 Key changes
	4.6.1 Changing the subscriber keys
	4.6.1.1 General description
	4.6.1.2 Format of the order data

	4.6.2 Changing the bank keys

	4.7 Change-over to longer key lengths
	4.8 Migration of remote data transmission to EBICS via FTAM
	4.8.1 General description
	4.8.2 HSA [optional]
	4.8.3 Description of the EBICS messages for HSA
	4.8.3.1 Format of the order data
	4.8.3.2 Description and example messages

	4.9 Summary

	5 EBICS transactions
	5.1 General provisions
	5.1.1 EBICS transactions
	5.1.2 Transaction phases and transaction steps
	5.1.3 Processing of orders
	5.1.3.1 Chronological dependencies between transmission and processing of upload orders
	5.1.3.2 Chronological dependencies between transmission and processing of download orders

	5.1.4 Transaction administration

	5.2 Assignment of EBICS request to EBICS transaction
	5.3 Preliminary verification of orders [optional]
	5.4 Recovery of transactions [optional]
	5.5 Upload transactions
	5.5.1 Sequence of upload transactions
	5.5.1.1 Description of the EBICS messages
	5.5.1.1.1 EBICS messages in transaction initialisation
	5.5.1.1.2 EBICS messages in the phase data transfer of a order data segment

	5.5.1.2 Processing of EBICS messages
	5.5.1.2.1 Processing in the initialisation phase
	5.5.1.2.2 Processing in the data transfer phase

	5.5.2 Recovery of upload transactions

	5.6 Download transactions
	5.6.1 Sequence of download transactions
	5.6.1.1 Description of EBICS messages
	5.6.1.1.1 EBICS messages in transaction initialisation
	5.6.1.1.2 EBICS messages in the data transfer phase
	5.6.1.1.3 EBICS- messages in the acknowledgement phase

	5.6.1.2 Processing the EBICS messages
	5.6.1.2.1 Processing in the initialisation phase
	5.6.1.2.2 Processing in the data transfer phase
	5.6.1.2.3 Processing in the acknowledgement phase

	5.6.2 Recovery of download transactions

	6 Encryption
	6.1 Encryption at TLS level
	6.2 Encryption at application level

	7 Segmentation of the order data
	7.1 Process description
	7.2 Implementation in the EBICS messages

	8 Distributed Electronic Signature (VEU)
	8.1 Process description
	8.2 Technical implementation of the VEU
	8.3 Detailed description of the VEU order types
	8.3.1 HVU (download VEU overview) and HVZ (Download VEU overview with additional information) [mandatory]
	8.3.1.1 HVU request
	8.3.1.1.1 XML schema (graphical representation)
	8.3.1.1.2 XML schema (textual representation)
	8.3.1.1.3 Meaning of the XML elements/attributes
	8.3.1.1.4 Example XML (abridged)

	8.3.1.2 HVU response
	8.3.1.2.1 XML schema (graphic representation)
	8.3.1.2.2 XML schema (textual representation)
	8.3.1.2.3 Meaning of the XML elements/attributes
	8.3.1.2.4 Example XML

	8.3.1.3 HVZ request
	8.3.1.3.1 XML schema (graphical representation)
	8.3.1.3.2 XML schema (textual representation)
	8.3.1.3.3 Meaning of the XML elements/attributes
	8.3.1.3.4 Example XML (abridged)

	8.3.1.4 HVZ response
	8.3.1.4.1 XML-Schema (graphic representation)
	8.3.1.4.2 XML schema (textual representation)
	8.3.1.4.3 Meaning of the XML elements/attributes
	8.3.1.4.4 Example XML

	8.3.2 HVD (retrieve VEU state) [mandatory]
	8.3.2.1 HVD request
	8.3.2.1.1 XML schema (graphical representation)
	8.3.2.1.2 XML schema (textual representation)
	8.3.2.1.3 Meaning of the XML elements/attributes
	8.3.2.1.4 Example XML (abridged)

	8.3.2.2 HVD response
	8.3.2.2.1 XML schema (graphical representation)
	8.3.2.2.2 XML schema (textual representation)
	8.3.2.2.3 Meaning of the XML elements/attributes
	8.3.2.2.4 Example XML

	8.3.3 HVT (retrieve VEU transaction details) [mandatory]
	8.3.3.1 HVT request
	8.3.3.1.1 XML schema (graphical representation)
	8.3.3.1.2 XML schema (textual representation)
	8.3.3.1.3 Meaning of the XML elements/attributes
	8.3.3.1.4 Example XML (abridged)

	8.3.3.2 HVT response
	8.3.3.2.1 XML schema (graphical representation)
	8.3.3.2.2 XML schema (textual representation)
	8.3.3.2.3 Meaning of the XML elements/attributes
	8.3.3.2.4 Example XML

	8.3.4 HVE (add electronic signature) [mandatory]
	8.3.4.1 HVE request
	8.3.4.1.1 XML schema (graphical representation)
	8.3.4.1.2 XML schema (textual representation)
	8.3.4.1.3 Meaning of the XML elements/attributes
	8.3.4.1.4 Example XML (abridged)

	8.3.4.2 HVE response

	8.3.5 HVS (VEU cancellation) [mandatory]
	8.3.5.1 HVS request
	8.3.5.1.1 XML schema (graphic representation)
	8.3.5.1.2 XML schema (textual representation)
	8.3.5.1.3 Meaning of the XML elements/attributes
	8.3.5.1.4 Example XML (abridged)

	8.3.5.2 HVS response

	9 “Other” EBICS order types
	9.1 HAA (download retrievable order types) [optional]
	9.1.1 HAA request
	9.1.2 HAA response
	9.1.2.1.1 XML schema (graphic representation)
	9.1.2.1.2 XML schema (textual representation)
	9.1.2.1.3 Meaning of the XML elements/attributes
	9.1.2.1.4 Example XML

	9.2 HPD (download bank parameters)
	9.2.1 HPD request
	9.2.2 HPD response
	9.2.2.1.1 XML schema (graphic representation)
	9.2.2.1.2 XML schema (textual representation)
	9.2.2.1.3 Meaning of the XML elements/attributes
	9.2.2.1.4 Example XML

	9.3 HKD (retrieve customer’s customer and subscriber information) [optional]
	9.3.1 HKD request
	9.3.2 HKD response
	9.3.2.1.1 XML schema (graphic representation)
	9.3.2.1.2 XML schema (textual representation)
	9.3.2.1.3 Meaning of the XML elements/attributes
	9.3.2.1.4 Example XML

	9.4 HTD (retrieve subscriber’s customer and subscriber information) [optional]
	9.4.1 HTD request
	9.4.2 HTD response
	9.4.2.1.1 XML schema (graphic representation)
	9.4.2.1.2 XML schema (textual representation)
	9.4.2.1.3 Meaning of the XML elements/attributes
	9.4.2.1.4 Example XML

	9.5 HEV (Download of supported EBICS versions)
	9.5.1 HEV request
	9.5.2 HEV response
	9.5.3 Schema for HEV request / HEV response
	9.5.3.1 Meaning of the XML elements and XML attributes of the HEV response
	9.5.3.2 Example XML for the HEV response

	9.6 FUL and FDL (Upload and download files with any format) [optional]

	10 Customer protocols
	10.1 Customer protocol - stipulations regarding contents and form
	10.1.1 Stipulations regarding contents
	10.1.2 Stipulations regarding form
	10.1.2.1 Protocolling the actions at the bank’s end
	10.1.2.2 Protocolling of errors during signature verification
	10.1.2.3 File display
	10.1.2.4 Inserting individual texts
	10.1.2.5 Support of foreign-language customer protocols
	10.1.2.6 Protokollierung von nicht im EBICS-Verfahren autorisierten Aufträgen

	10.1.3 File display at the customer’s and the bank’s end

	10.2 Stipulations for protocolling SEPA data formats
	10.2.1 Specification for SEPA payment transactions (ZKA)
	10.2.2 SEPA-Container
	10.2.3 Extended grouping options

	10.3 Protocolling the VEU
	10.4 Protocolling key management
	10.5 Protocolling other system-related orders
	10.6 Report texts

	11 Appendix: Cryptographic processes
	11.1 Identification and authentication signature
	11.1.1 Process
	11.1.2 Format

	11.2 Electronic signatures
	11.2.1 Process
	11.2.2 Format
	11.2.3 EBICS authorisation schemata for signature classes

	11.3 Encryption
	11.3.1 Encryption at TLS level
	11.3.1.1 Process

	11.3.2 Encryption at application level
	11.3.2.1 Process
	11.3.2.2 Formats

	11.4 Replay avoidance via Nonce and Timestamp
	11.4.1 Process description
	11.4.2 Actions of the customer system
	11.4.2.1 Generation of “Nonce” and “Timestamp”
	11.4.2.2 Behaviour in the event of error response EBICS_TX_MESSAGE_REPLAY

	11.4.3 Actions of the bank system
	11.4.3.1 Verification of “Nonce” and “Timestamp”

	11.5 Initialisation letters
	11.5.1 Initialisation letter for INI (example)
	11.5.1.1 With version A004 of the electronic signature
	11.5.1.2 With version A005 of the electronic signature

	11.5.2 Initialisation letter for HIA (example)

	11.6 Generation of the transaction IDs

	12 Overview of selected EBICS details
	12.1 Optional EBICS features
	12.1.1 Optional order types
	12.1.2 Optional functionalities in the course of the transaction

	12.2 EBICS bank parameters
	12.3 Order attributes
	12.4 Security media of bank-technical keys
	12.5 Patterns for subscriber IDs, customer IDs, order IDs

	13 Appendix: Order type identifiers
	14 Appendix: Signature process for the electronic signature
	14.1 Version A005/A006 of the electronic signature
	14.1.1 Preliminary remarks and introduction
	14.1.2 RSA
	14.1.3 Standard digital signature algorithm
	14.1.3.1 Standard signing function
	14.1.3.2 Standard recovery function

	14.1.4 ZKA Signature Mechanisms A005 and A006
	14.1.4.1 Signature Mechanism A005
	14.1.4.1.1 Digital signature generation
	14.1.4.1.2 Digital signature verification
	14.1.4.1.3 Notation

	14.1.4.2 Signature mechanism A006
	14.1.4.2.1 Mask generation function MGF1
	14.1.4.2.2 Digital signature generation according to EMSA-PSS
	14.1.4.2.3 Digital signatur verification according to EMSA-PSS
	14.1.4.2.4 Notation for EMSA-PSS
	14.1.4.2.5 Digital signature generation according to A006
	14.1.4.2.6 Digital signature verification according to A006
	14.1.4.2.7 Notation for A006

	14.1.5 References
	14.1.6 XML structure of signature versions A005/A006

	14.2 Version A004 of the electronic signature
	14.2.1 Introduction
	14.2.2 RSA key components
	14.2.3 Signature algorithm
	14.2.4 Signature process according to the DIN specification
	14.2.5 Signature format A004
	14.2.5.1 Signature format
	14.2.5.2 Determination of the hash value via the file that is to be signed
	14.2.5.3 Structure of the signature file
	14.2.5.4 Structure of the public key file (INI file)
	14.2.5.5 References

	15 Appendix: Encryption process V001
	15.1 Workflows at the sender’s end
	15.2 Workflows at the recipient’s end

	16 Appendix: Standards and references
	17 Appendix: Glossary
	18 Table of diagrams

